Rich and Robust Bio-Inspired Locomotion Control for Humanoid Robots

Ph.D. thesis – Public defense Nicolas Van der Noot

Prof Kamiar Aminian Prof Renaud Ronsse Prof Auke Jan Ijspeert Prof Paul Fisette Prof Hartmut Geyer Prof Silvestro Micera president thesis director thesis director examiner examiner examiner

Robots capable to adapt to our environment

© Star Wars : Episode VII – The Force Awakens

Humanoid robots in movies

© Rogue One – A Star Wars Story

DARPA Robotics Challenge

© IEEE Spectrum – DRC compilation

Reflex-based controller

Forward gait modulation in 2D scenarios

Steering control in 3D scenarios

Conclusion

Reflex-based controller

Forward gait modulation in 2D scenarios

Steering control in 3D scenarios

Conclusion

Biped embodiment: the COMAN robot

Rich and Robust Bio-Inspired Locomotion Control for Humanoid Robots – Louvain-la-Neuve – 30th August 2017

2D gait

3D gait

waist motion only in

no motion constraint

the world sagittal plane

Human walking skills for robots

© Chestnutt, 2005

Traditional approaches

- versatile and well known
- energy inefficiency
- non human-like features

Bio-inspired limit cycle walkers

- energy efficiency
- human-like features
- many parameters to optimize
- mainly in simulation

© Geyer, 2010

"A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities", H. Geyer and H. Herr, 2010

➡ Port bio-inspired controllers with steering capabilities to humanoid robots

General control framework

Reflex-based controller

- Neuromuscular model
- Experimental validation
- Adaptation to different robots

Forward gait modulation in 2D scenarios

Steering control in 3D scenarios

Conclusion

Muscle-based control

General control framework

The biped is equipped with virtual **Hill-type muscles** in each leg.

Stimulation signals are computed based on **reflex rules**.

These rules are adapted from [Geyer and Herr, 2010].

General control framework

Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO)

Learning through optimization

The optimizer rewards robust walkers.

Rich and Robust Bio-Inspired Locomotion Control for Humanoid Robots – Louvain-la-Neuve – 30th August 2017

Reflex-based controller

- Neuromuscular model
- Experimental validation
- Adaptation to different robots

Forward gait modulation in 2D scenarios

Steering control in 3D scenarios

Conclusion

Optimized simulation gait for 2D scenarios

The reflex-based controller of [Geyer and Herr, 2010] is optimized in a **2D simulation environment**.

The exact same controller is ported to the real robot.

Lateral balance

- constraints in simulation
- upper-body control on the real robot

Help from a human operator

Experimental validation on a treadmill

Simulation and experimental gaits

Reflex-based controller

- Neuromuscular model
- Experimental validation
- Adaptation to different robots

Forward gait modulation in 2D scenarios Steering control in 3D scenarios Conclusion

Adaptation to different robots

Rich and Robust Bio-Inspired Locomotion Control for Humanoid Robots – Louvain-la-Neuve – 30th August 2017

2D walking with different robots

Rich and Robust Bio-Inspired Locomotion Control for Humanoid Robots – Louvain-la-Neuve – 30th August 2017

Reflex-based controller

Forward gait modulation in 2D scenarios

- Walking gaits
- Running gaits

Steering control in 3D scenarios

Conclusion

Central pattern generator (CPG)

2D walking gaits

Combining reflexes with a CPG

- Proximal muscles mainly driven by CPG
- Distal muscles mainly driven by reflexes

High-level parameters adapted as linear functions of the target speed

- 4 CPG parameters
- 1 reflex parameter

Getting different gaits

- Speeds ranging from 0.4 m/s to 0.9 m/s
- All parameters **co-optimized** in one single optimization

General control framework

Forward speed modulation during 2D walking

Crossing a hole with step length modulation

Steph height and length adaptations

Philippe Greiner

Reflex-based controller

Forward gait modulation in 2D scenarios

- Walking gaits
- Running gaits

Steering control in 3D scenarios

Conclusion

2D running gaits

Extension to running gaits

- High-level parameters modulated as functions of the target speed
- All parameters **co-optimized** in one single optimization
- Speeds ranging from 1.3 m/s to 1.7 m/s

Matthew Harding

Forward speed modulation during 2D running

Rich and Robust Bio-Inspired Locomotion Control for Humanoid Robots – Louvain-la-Neuve – 30th August 2017

Reflex-based controller

Forward gait modulation in 2D scenarios

Steering control in 3D scenarios

- Bio-inspired balance controller
- Straight walking
- Heading control

Conclusion
Bio-inspired balance controller

Balance controller

- Resist to external perturbations
- Automatically learn stimulation patterns
- Control the center of mass (COM) position

François Heremans

Resisting to external perturbations

Rich and Robust Bio-Inspired Locomotion Control for Humanoid Robots – Louvain-la-Neuve – 30th August 2017

Introduction & Methods

Reflex-based controller

Forward gait modulation in 2D scenarios

Steering control in 3D scenarios

- Bio-inspired balance controller
- Straight walking
- Heading control

Conclusion

Extension to 3D control

- New virtual **muscles** (in all the planes)
- New **reflex** signals
- **CPG** structure incremented

Sagittal plane

Lateral plane

Transverse plane

CPG structure for straight walking

100

General control framework

Forward speed tracking

Comparisons to human and tradional data

Blind walking: stairs

Blind walking: slope

Blind walking impacted by flying balls

Introduction & Methods

Reflex-based controller

Forward gait modulation in 2D scenarios

Steering control in 3D scenarios

- Bio-inspired balance controller
- Straight walking
- Heading control

Conclusion

CPG structure for heading control

General control framework

Forward speed and steering control

Rich and Robust Bio-Inspired Locomotion Control for Humanoid Robots – Louvain-la-Neuve – 30th August 2017

3D walking: avoiding holes

Depending on the commands received, the walker either falls in a hole or escapes it.

Introduction & Methods

Reflex-based controller

Forward gait modulation in 2D scenarios

Steering control in 3D scenarios

Conclusion

Original contributions

Reflex-based controller

- **Experimental** validation of a neuromuscular controller
- Porting the controllers to **different robots**
- Hill **muscle model** numerical integration
- Feet with human-like **compliance**

Gait modulation in 2D scenarios

- Gait modulation during walking gaits
- Speed modulation during running gaits

Steering control in 3D scenarios

- Bio-inspired **balance** controller
- Forward speed modulation during **straight** walking
- **Heading** modulation (steering control)

- Extend the **panel of motions**
 - stairs climbing
 - side stepping
 - ...
- Study gait finalization
- Obtain **slow walking** gaits
 - speeds below 0.3 m/s
- Investigate real human locomotion
- Test the 3D walking controller on a real robot
- ...

Acknowledgements

Advisors

Prof. Renaud Ronsse

Prof. Auke Ijspeert

Master theses & semester project students

François Heremans

Adrien De Coninck

Bruno Somers

Philippe Greiner

Matthew Harding

Rich and Robust Bio-Inspired Locomotion Control for Humanoid Robots – Louvain-la-Neuve – 30th August 2017

Acknowledgements

BioRob

Acknowledgements

Journal papers

- Van der Noot N, Ijspeert AJ and Ronsse R (conditionally accepted) Bio-inspired controller achieving forward speed modulation with a 3D bipedal walker. International Journal of Robotics Research.
- Zobova AA, Habra T, Van der Noot N, Dallali H, Tsagarakis NG, Fisette P and Ronsse R (2017) Multiphysics modelling of a compliant humanoid robot. *Multibody System Dynamics* 39 (1-2), pp. 95-114.

Conference papers

- Heremans F, Van der Noot N, Ijspeert AJ and Ronsse R (2016) Bio-inspired balance controller for a humanoid robot. In: 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), Singapore, 26-29 June 2016, pp. 441-448.
- Colasanto L, Van der Noot N and Ijspeert AJ (2015) Bio-inspired walking for humanoid robots using feet with human-like compliance and neuromuscular control. In: 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), Seoul, 3-5 Nov. 2015, pp. 26-32.

List of publications

- Van der Noot N, Colasanto L, Barrea A, van den Kieboom J, Ronsse R and Ijspeert AJ (2015)
 Experimental validation of a bio-inspired controller for dynamic walking with a humanoid robot. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Sept. 28 2015-Oct. 2 2015, pp. 393-400.
- Zobova AA, Habra T, Van der Noot N, Dallali H, Tsagarakis NG, Fisette P and Ronsse R (2015) Multiphysics modelling of a compliant humanoid robot. In: ECCOMAS Thematic Conference Multibody Dynamics 2015, Barcelona, 29 June-02 July 2015.
- Van der Noot N, Ijspeert AJ and Ronsse R (2015) Biped gait controller for large speed variations, combining reflexes and a central pattern generator in a neuromuscular model. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, 26-30 May 2015, pp. 6267-6274.
- Van der Noot N and Barrea A (2014) Zero-Moment Point on a bipedal robot under bio-inspired walking control. In: *MELECON 2014 - 17th IEEE Mediterranean Electrotechnical Conference*, Beirut, 13-16 April 2014, pp. 85-90. DOI: 10.1109/MELCON.2014.6820512.

Poster presentations

- Van der Noot N, Ijspeert AJ and Ronsse R (2016) Neuro-Muscular Controller Based on Reflexes and a Central Pattern Generator to Achieve Gait Modulation. In: *KoroiBot Final Workshop*, Heidelberg, 13-14 September 2016.
- Van der Noot N, Ijspeert AJ and Ronsse R (2016) Humanoid Robot Control Recruiting Muscles, Reflexes and a Central Pattern Generator. In: *IEEE-EMB Benelux Chapter and the 14th National Day on Biomedical Engineering*, Brussels, 4 March 2016.
- Van der Noot N, Colasanto L, Ronsse R and Ijspeert AJ (2015) Porting Reflex-Based Muscles Control to Real Humanoid Robots. In: 2015 IEEE International Conference on Robotics and Automation (ICRA)
 Workshop on Dynamic Locomotion and Balancing, Seattle, WA, 26 May 2015.
- Van der Noot N, Dzeladini F, Ijspeert AJ and Ronsse R (2014) Simplification of the Hill Muscle Model Computation for Real-Time Walking Controllers with Large Time Steps. In: Dynamic Walking, Zurich, 10-13 June 2014.

Respice finem

Introduction & Methods

Reflex-based controller

Forward speed modulation in 2D scenarios

Steering control in 3D scenarios

Conclusion

Supplementary material

Hill muscle model integration problem

Hill muscles: computing the steady-state values

Hill muscles: steady-state approximation results

Combining approximations and full dynamics

Real experiment: simulation and experimental gaits

Real experiment: vertical feet forces

Simulation forces

Real experiment forces

Rich and Robust Bio-Inspired Locomotion Control for Humanoid Robots – Louvain-la-Neuve – 30th August 2017

Real experiment: long walk

Feet with human-like compliance

Feet comparisons: ground bumps description

Compliant feet on uneven terrains

Feet comparisons on uneven terrains

Feet comparisons: energy and robustness

Feet comparisons: stride length and period

Real experiment: flexible feet

2D walking: speed parameters

2D walking: metabolic energy consumption

Small increase in **energy consumption** for the adaptive-CPG controller. Reasonable price to pay for the resulting **versatility**.

2D walking: characteristics

2D running: speed parameters (I)

2D running: speed parameters (II)

2D running: characteristics

Pushes: feet contact forces

Neural controller: a regression engine

CMAC

Cerebellum Model for Articulation Control (CMAC)

Based on the cerebellum organization

Neural network

[Smith 1998]

Support Vector Regression (SVR)

Mathematical model

Data points selected as support vectors

Torques reconstruction

Stimulations reconstruction

COG ration: sagittal plane

COG ration: transverse plane

Learning performances

Cognitive control ratio

training time elapsed simulation time

CPG structure for straight walking

3D straight walking: characteristics

3D walking: speed parameters (I)

3D walking: speed parameters (II)

Comparisons to human and LIP-based data

Comparisons to human and LIP-based data

Energetic consumption: square torques integration

square torques per gait cycle, divided by traveled distance

square torques per gait cycle

Robustness: facing unknown slopes

Robustness: blind walking on irregular ground

ground description

Blind walking on irregular ground

Full 3D control

- New virtual **muscles** (in all the planes)
- New **reflex** signals
- **CPG** structure incremented

Heading control: speed parameters

Walking curvature

Steering characteristics

Steering robustness

Footprints during steering

Robotran: real-time features

OpenGL features

basic shader

shader with lights

shader with lights and shadows

directional light

point light

spot light

Rich and Robust Bio-Inspired Locomotion Control for Humanoid Robots – Louvain-la-Neuve – 30th August 2017

Primitive shapes contact model

LMECA 2732 (UCL) & MICRO-452 (EPFL) courses

Zero-moment point

Zero-moment point computation

Zero-moment point: recursion

Ŕ Ŵ X Û Ŷ Û 0 Ĥ \widehat{E} θ_{DE} \widehat{D} Ƙ θ_{CD} θ_{BC} n θ_{AB} θ_{MN} Ñ Â (a) Joint and positions (b) Forward kinematics path

Zero-moment point results: 2D walking

No foot information, no post-process filtering

Foot orientation provided, no post-process filtering

Zero-moment point results: 3D walking

Foot orientation provided, no post-process filtering

Foot orientation provided, 100 ms running-average

Rich and Robust Bio-Inspired Locomotion Control for Humanoid Robots – Louvain-la-Neuve – 30th August 2017