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Abstract
Despite all the efforts devoted in generating locomotion algorithms for bipedal walkers, robots are still far from
reaching the impressive human walking capabilities, for instance regarding robustness and energetic consumption.
In this paper, we developed a bio-inspired torque-based controller supporting the emergence of a new generation of
robust and energy-efficient walkers. It recruits virtual muscles driven by reflexes and a central pattern generator, and
thus requires no computationally intensive inverse kinematics or dynamics modeling. This controller is capable of
generating energy-efficient and human-like gaits (both regarding kinematics and dynamics) across a large range of
forward speeds, in a 3D environment. After a single off-line optimization process, the forward speed can be continuously
commanded within this range by changing high-level parameters, as linear or quadratic functions of the target speed.
Sharp speed transitions can then be achieved with no additional tuning, resulting in immediate adaptations of the
step length and frequency. In this paper, we particularly embodied this controller on a simulated version of COMAN,
a 95 cm tall humanoid robot. We reached forward speed modulations between 0.4 m/s and 0.9 m/s. This covers
normal human walking speeds once scaled to the robot size. Finally, the walker demonstrated significant robustness
against a large spectrum of unpredicted perturbations: facing external pushes or walking on altered environments, like
stairs, slopes and irregular grounds.
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1 Introduction
Mobile robots hold the promise of a better integration
of robotics in our everyday life. However, they
are usually restricted to environments adapted to
their mobility. Humanoid robots offer an interesting
perspective in this context, since their body - roughly
similar to ours - is potentially perfectly adapted to
our world, designed for humans (Schaal, 2007). Also,
they offer the possibility to manipulate tools designed
to comply with human dexterity, so that these tools
do not need to be adapted for the robot (Fitzpatrick
et al., 2016). This is particularly appealing in contexts
where the robot is expected either to take over a human
laborious duty, or to co-work in synergy with human
operators.
Nowadays, these robots skills are still far from

reaching the level of the human ones, thus preventing
them from being routinely used. This is especially
true regarding locomotion. The most popular methods
developed to achieve dynamic walking rely on the
zero-moment point (ZMP) as an indicator of gait

feasibility (Vukobratovic and Borovac, 2004). The
ZMP can then be used to generate walking patterns
guaranteeing dynamic stability at every moment
during the gait. Many locomotion experiments were
successfully conducted using this indicator, for example
with ASIMO (Chestnutt et al., 2005) or with the HRP-
2 platform (Kaneko et al., 2002).

However, there are several shortcomings related to
these ZMP-based bipedal controllers, notably energy
inefficiency (Dallali, 2011). Furthermore, the generated
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pattern gaits look quite unnatural (low waist position,
permanent knee bending, feet kept parallel to the
ground. . . ) and the resulting walking speed is typically
much slower than the one achieved by a healthy human
displaying the same morphology (Kurazume et al.,
2005; Sardain and Bessonnet, 2004). In particular,
ZMP-based controller synthesis usually requires to
avoid singular configurations, thus preventing the
leg to reach full extension during the stance phase
(Kurazume et al., 2005). This has a direct impact
on the energetic consumption, since a bended knee
requires to maintain a torque balancing the body
static and dynamic forces. Some contributions however
managed to address this problem (Ogura et al., 2006).
Another concept frequently used to achieve dynamic

walking is the inverted pendulum model (IPM). In its
most basic version, the IPM models the biped as a
single point mass with contact forces acting at the feet
level, in order to produce desired motions for the COM.
The IPM can then possibly be used to control the ZMP
(Faraji et al., 2014a,b). The linear inverted pendulum
(LIP) is a special case of the IPM where the point mass
is constrained to move in a plane of constant height
(Razavi et al., 2017).

The limit cycle walking concept relaxes the need to
guarantee the local stability at all times of the gait.
It treats the gait as a limit cycle and investigates
its global stability (Hobbelen and Wisse, 2007).
(Quasi-)passive walkers are successful implementations
of this concept (McGeer, 1990; Collins and Ruina,
2005; Hobbelen et al., 2008). Although they display
human-like gait patterns and require zero (or little)
energetic consumption, they are usually limited to very
controlled environments, since they usually lack control
variables to modulate the gait or to resist perturbations
like obstacles or collisions.

Another avenue to explore the limit cycle walking
concept is through the development of so-called bio-
inspired walkers. Here, bio-inspiration means that
the principles governing the design of the walker’s
body and/or controller rely on concepts identified in
humans. In particular, the seminal paper of (Geyer
and Herr, 2010), further extended in (Song and Geyer,
2015), developed a bipedal model being actuated by
a human-like neuromuscular model. Using reflexes to
drive these muscles, they could reproduce human-
like walking patterns and leg kinematics, and predict
muscle activation patterns similar to human walking
experiments. In addition, the simulated viscoelastic
properties of these virtual muscles provided robustness
to external perturbations.

This approach was further extended to provide
realistic motions of 3D animated characters (Wang

et al., 2012; Geijtenbeek et al., 2013). Interestingly,
part of this model was also adapted to control a
powered ankle-foot prosthesis (Eilenberg et al., 2010),
thus further enhancing the bio-inspired framework. In
(Van der Noot et al., 2015a), we brought this controller
to a real humanoid robot. When external assistance
was provided to the lateral balance, the robot was
capable of walking on a treadmill.

However, the reflex rules developed in (Geyer and
Herr, 2010) do not feature modulation capabilities, for
instance regarding the control of the forward speed.
(Song and Geyer, 2012) solved this limitation by
optimizing the many parameters of this controller to
reach different forward speeds. Large speed variations
requested then to run additional optimizations to find
new parameter modulations between pre-optimized
walking gaits.

An alternative bio-inspired gait modulation strategy
requires the addition of a central pattern generator
(CPG). CPGs are neural circuits capable of producing
rhythmic patterns of neural activity without receiving
rhythmic inputs. They feature valuable properties
like distributed control, redundancies handling, and
locomotion modulation using simple control signals
(Ijspeert, 2008).

While locomotor CPGs were identified in many
vertebrates, their involvement in human locomotion is
still a matter open to discussion (Dimitrijevic et al.,
1998). Yet, computational models showed that CPGs
could play a major role in human locomotion. For
instance, (Taga, 1994) could adapt the locomotion
of a bipedal model on uneven terrains, using CPG
modulation. (Aoi and Tsuchiya, 2005) could achieve
robust walking with a biped robot by recruiting
nonlinear oscillators, both in numerical simulations
and with a hardware platform. In (Dzeladini et al.,
2014), a CPG was added to the controller of (Geyer and
Herr, 2010), in order to act as a feedback predictor and,
then, to modulate the forward speed. This provided
an interesting implementation of Kuo’s framework for
combining feedback (i.e. reflexes) and feed-forward
(i.e. CPG) pathways in the control of a periodic task
(Kuo, 2002). In (Paul et al., 2005), a neuromuscular
model used a CPG as central element to investigate
the effects of a spinal cord injury on locomotor
abilities. Importantly, modeling efforts investigating
the potential role of CPG in human locomotion
ubiquitously display their complex intertwining with
feedback mechanisms (Rossignol et al., 2006).

In the present contribution, we embrace the idea
of combining a CPG and reflexes in a neuromuscular
torque-based controller for bipedal locomotion. More
precisely, we design a controller capable of generating
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robust and human-like locomotion gaits on a
3D bipedal walker. In particular, forward speed
modulation is achieved through the adaptation of some
high level parameters, i.e. mainly the CPG inputs.
Preliminary results of this controller (i.e. limited to the
2D sagittal plane) were already published in (Van der
Noot et al., 2015b).
This paper is divided as follows. In Section 2,

the walking controller is extensively detailed. Then,
Section 3 presents both the simulation environment
and the robotic platform that was used for embodying
our controller, namely COMAN, a 95 cm tall humanoid
robot. The controller is further extended in Section 4,
in order to achieve forward speed modulation. The
resulting gait features are analyzed in Section 5, while
Section 6 evaluates the robustness of the controller
when walking blindly in perturbed environments.
Finally, Section 7 concludes the paper.

2 Controller design and architecture
Our controller is expected to provide torque references
for all the joints of a bipedal walker. These torque
references are computed from a bio-inspired approach:
they derive from forces being produced by virtual
muscles. These muscles are in turn "activated" by
receiving appropriate stimulations. The coordination
of these stimulations is governed by a CPG central
unit. Importantly, the paper reports the successive
increments performed while designing this CPG
network, in order to generate the stimulation patterns
governing different walking features. Combining these
stimulations with virtual reflexes, robust and efficient
gaits can be obtained after an optimization of the many
parameters controlling both the reflexes and the CPG.
The different modules developed in this controller,
together with the biped embodiment, are summarized
in Figure 1.

2.1 Neuromuscular model
The investigated joints configuration is provided in
Figure 2. This configuration fits the one of the COMAN
robot (Tsagarakis et al., 2013), which served as
embodiment for our experiments (see Section 3.1). This
joint configuration is quite ubiquitous in humanoid
robots, so that the proposed controller should be
adaptable to many other humanoid robots.

To drive these joints, the robot recruits (virtual)
muscles. This approach is directly inspired by the
paper of (Geyer and Herr, 2010) and is outlined below.
Different muscle groups are identified in each body
part, and correspond to muscles of the actual human
leg anatomy: 27 different types of muscle groups are

recruited to actuate the 23 joints of the biped, as
reported in Figure 2.

More precisely, each muscle group is computed
as a set of equations, called the Hill muscle model
(Hill, 1938) and pictured in Figure 2c. Each muscle
tendon unit (MTU) consists of two main elements: a
contractile one (CE) and a series elastic one (SE). Two
additional passive elements further engage when the
muscle state is outside its normal operation range: the
parallel elastic one (PE) and the buffer elasticity one
(BE). The length lmtu of each MTU is computed by
geometrical relationships involving the joint angles and
the MTU attachment points. The length of CE lce is
integrated based on lmtu and on the muscle activation
Am, which is detailed later. Then, the deformation
of SE (i.e. the length lse, computed as lse = lmtu −
lce), provides a direct computation of the force Fm
generated by the muscle. Finally, this force Fm is
multiplied by the muscle lever arm rm to generate a
torque contribution to the corresponding joint. For bi-
articular muscles (i.e. GAS and HAM in Figure 2a and
2b), a single muscle provides two torque contributions
with two different lever arms. The full implementation
of these equations can be found in Appendix B.

In sum, this musculo-skeletal model provides joint
torques through virtual muscle forces and attachment
points. So, instead of directly controlling the torques,
we rather control each MTU through input signals
called muscles activations Am. They are related to
neural inputs Sm called stimulations, using a first-order
low-pass filter capturing the excitation-contraction
dynamics (see Figure 1 and Appendix B.2). The
following sections detail how the stimulations Sm of
each muscle are computed.

2.2 Frequency and phasing signal construction
Our controller uses both CPG signals and reflexes
to drive the muscles. The combination between these
two types of signals mainly follows a proximo-distal
gradient. In other words, muscles close to the hips are
mainly controlled by CPG signals (feed-forward), while
the ones close to the feet are mainly driven by reflexes
(feedback) (Dzeladini et al., 2014). This builds upon
the rationale that distal muscles are more impacted by
external perturbations like ground interactions (Daley
et al., 2007).

Our CPG is designed as a twelve-neurons network
of Matsuoka oscillators (Matsuoka, 1985, 1987). These
are bio-inspired artificial oscillators, capturing the
mutual inhibition between half-centers located in the
spinal cord. They also have interesting properties.
Indeed, they feature stable limit cycles, have a low
computational cost and are easy to integrate with
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Figure 1. The neuromuscular controller purpose is to provide torque references τref to the biped joints when receiving
sensory information from the biped state. On top of that, high-level commands are provided by the user as linear or quadratic
functions of a scalar input: the speed reference vref . Then, the interplay between the CPG and the reflexes provides
stimulation signals Sm. They are later converted into activations Am controlling the virtual Hill-type muscles. These muscles
finally produce forces Fm, converted to the joint torques via lever arms. The biped embodiment used in this contribution
tracks the desired torques τref by feeding the actuators with appropriate voltages V . The actual torques τreal, combined with
the external forces, drive the time evolution of the biped state, eventually resulting in locomotion.

sensory feedback signals. In this contribution, the CPG
network is divided into two main parts (see Figure 3).
The first one is in charge of providing the main
frequency and phasing of the gait cycle. Its neurons are
denoted with a number (from 1 to 4) and are called
"rhythm generator" neurons (RG). The second layer
relies on the RG neurons to generate signals shaping
the patterns of muscle stimulations. The corresponding
neurons are denoted with a letter (from A to H) and
are called "pattern formations" neurons (PF). This
two-layered division is inspired by the two-level CPG
biological structure proposed by (McCrea and Rybak,
2008). In that contribution, the authors report several
experiments of fictive locomotion in the decerebrated
cat that can be reproduced with this particular CPG
architecture.
During the gait cycle, the strike impact is a crucial

moment where the load is quickly transferred from
one leg to the other. Simultaneously, a large effort
is requested from the new stance leg to prevent the
torso from collapsing forward, as a result of this large
impact. Therefore, it is critical for the CPG network
phase to be synchronized with the foot strike, so
that it provides large stimulations right after impact.
During the following loading response, the leg leaving
the stance phase must also provide significant efforts,
in order to propel the body and prepare the swing
phase through proper hip flexion and foot push-off.
Next, before the following strike, hip moments are less
significant in both legs. Indeed, the stance leg already
absorbed the main shock and only needs to maintain

the torso orientation, while the swing leg mainly relies
on ballistic motion. As a consequence, it is convenient
to divide the gait cycle into four stages. Two stages
are triggered by foot strikes from both legs, while
the two others approximately start during mid-stance.
This decomposition is similar to the high-level control
states presented in (Yin et al., 2007) or in (Wang et al.,
2012).

The CPG RG part is thus constructed with four
neurons, one for each stage. More precisely, we use four
fully connected Matsuoka neurons (Matsuoka, 1985,
1987). This structure is displayed in Figure 3a.

The Matsuoka equations governing this CPG are
detailed below. Each neuron Ni main state is captured
by its so-called firing rate xi. Its evolution with time is
governed by Equation (1), where τ is the time constant
for the rate of discharge, vi is the self-inhibition
modulated by an adaptation constant βj and ui is the
external input.

ẋi = 1
τ

(−xi − βj vi −
∑

ηk [xl]+ + ui) (1)

Finally, the connexion strengths ηk govern mutual
inhibition, i.e. the fact that the activation of a
given neuron decreases when another is active. It is
captured by the function [•]+ = max(0, •), so that only
positive firing rates are considered for inter-neurons
inhibition. The self-inhibition state variable is governed
by Equation (2), whose time constant is related to
the one of Equation (1) through the adimensional
parameter γj .
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(a) Sagittal muscles (arm and stance leg) (b) Sagittal muscles (torso and swing leg)

CE

PE BE

SE

lmtu

lce

Am

(c) Hill muscle model

(d) Lateral muscles (arm, torso and leg) (e) Transverse muscles (arm, torso and leg)

Sagittal leg Torso
1 SOL 14 BTR
2 TA 15 BTL
3 GAS 16 BET
4 VAS 17 BFL
5 HAM 18 BRR
6 GLU 19 BRL
7 HFL

Arms
Lateral leg 20 SET
8 HAB 21 SFL
9 HAD 22 SAB

10 EVE 23 SAD
11 INV 24 SER

25 SIR
Transverse leg 26 EET
12 HER 27 EFL
13 HIR

Figure 2. To actuate the biped’s 23 joints, the controller recruits 27 different Hill muscle models (panel (c)) acting in
different planes. These muscles are commanded by a combination of reflex signals and the CPG central unit. Muscles acting
in the sagittal plane are displayed in panels (a) and (b), the ones affecting the lateral plane are displayed in panel (d), and
finally, the ones acting in the transverse plane are depicted in panel (e). See the text for further details.

v̇i = 1
γj τ

(−vi + [xi]+) (2)

In (1) and (2), the index i corresponds to the neuron
index, while the gains βj , ηk, and the neurons xl are
specified in Figure 4. Finally, γj takes the same index as
βj . These equations are fully developed in Appendix C.
Interestingly, the time constant τ is inversely

proportional to the CPG frequency. This provides a
useful access for modulating the gait frequency.
Regarding phase locking, different models exploited

the capacity of CPGs to achieve entrainment, i.e.

to synchronize their firing pattern with stimulations
generated by the actuated body and/or its environ-
ment. In particular, (Aoi et al., 2010) developed a
locomotor CPG model to achieve bipedal locomotion,
also by recruiting a two-level CPG biological struc-
ture (i.e. combining RG and PF networks). In this
model, phase resetting was applied to the RG layer,
based on foot-contact information. CPG entrainment
was also achieved using Matsuoka oscillators. For
instance, in (de Rugy and Sternad, 2003) and (Ronsse
et al., 2009), this mechanism was investigated for uni-
and bi-manual upper-limb movements, while (Paul
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Figure 3. The CPG network is built by assembling two types
of components: (a) the rhythm generator (RG) part (four
fully connected Matsuoka neurons) and (b) a pair of pattern
formation neurons (PF) driven by the RG neurons. The
vertical symmetry corresponds to the left/right legs
symmetry.
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Figure 4. Full CPG network: inter-neuron excitations are
indicated with an empty circle, while plain circles represent
inhibitions. The "rhythm generator" neurons (RG, shaded)
affect the "pattern formation" ones (PF), but not vice versa.
The network vertical symmetry produces motor commands
for both body sides (legs and arms). The neurons’ main
contributions are the following. N{1−4}: rhythm generator
and upper-body control; N{A,B}: knee bending and torso
sagittal stabilization; N{C,D}: hip flexion; N{E,F}: torso
lateral stabilization; N{G,H}: late swing leg retraction. The
corresponding muscular activations are highlighted with plain
circles in Figure 2. The full CPG equations are provided in
Appendix C.

et al., 2005) and (Taga, 1994) investigated locomotion.
Here, a similar mechanism generating short excitations
modulations at foot strike is used. Basically, all the

excitations ui consist in a tonic excitation of u = 1.
Then, if a neuron Ni is too slow (i.e. not firing while
the corresponding phase already started) or too fast,
its excitation ui is shortly modulated as reported in
Appendix D. Combining it with the time constant τ
modulation, this guarantees that the CPG and the
walker display the same frequency, while staying in
phase with feet strikes.

The four RG neurons N1, N2, N3 and N4 are
the central elements of the whole CPG network in
Figure 4. Their typical firing rates temporal evolutions
are pictured in Figure 5. In the next sections, this
network is incremented with the PF neurons.
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Figure 5. Time-evolution of the twelve neurons firing rates
of Figure 4 over one gait cycle (0 % and 100 % correspond to
right foot strikes, the dashed line corresponds to left foot
strike). These signals are obtained during one typical gait
cycle of the locomotion resulting from the controller used in
most of the results of this paper (called reference controller),
with a speed reference of 0.65 m/s.

2.3 Leg sagittal stance control
The four RG neurons network determines the CPG
frequency and phase synchronization. In order to
send appropriate stimulations to the muscles, this
network is further incremented with pairs of pattern
formation neurons (PF). These receive inputs from the
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RG neurons but not the other way around. This is
achieved with the unidirectional structure displayed in
Figure 3b.
To generate the CPG contribution to a particular

muscle stimulation Sm, the different CPG outputs
yi are computed as detailed in Appendix E.1. They
mainly consist in extracting the positive firing rate
of a PF neuron xj (i.e. yi = [xj ]+). Then, the CPG
contribution to a particular stimulation is computed
as Sm =

∑
ki yi, where ki is a gain.

As mentioned earlier, fast hip muscle reactions
are required after strike impact to prevent the torso
from collapsing forward. This is provided by the
gluteus (GLU) and hamstring (HAM) muscle groups.
Therefore, neurons being aligned (i.e. firing at the same
time) with the N1 and N2 neurons of the RG structure
are requested, so that they can quickly fire right after
strike. This is the purpose of the two neurons NA and
NB (see Figure 4). They are in charge of providing the
requested stimulation patterns. In order to keep them
aligned with N1 and N2, similar weights are used for
the self and mutual inhibitions, as well as for the time
constant gains. As can be seen in Figure 5, their firing
signals (xA and xB) are indeed well aligned with x1
and x2, as expected.

After the strike impact absorption, reflexes are
activated at the hip level to maintain the torso
sagittal lean angle θt close to a reference θref . The
requested muscles are the hip flexor (HFL) and GLU
muscles. As proposed in (Geyer and Herr, 2010), this
is performed by a proportional-derivative (PD) control
of the lean angle error, ∆PD = θref − θt. This signal
generates a stimulation to one of the two antagonist
hip muscles, i.e. one muscle receives a stimulation
proportional to [∆PD]+, the other to [∆PD]− (with
[•]− = −min(•, 0)). This reflex can however send
contradictory signals to the ones generated by the
CPG. To avoid this, an inhibition mechanism ruled by
the CPG was implemented (see Appendix E.1).
The remaining leg sagittal muscles are the distal

ones, namely soleus (SOL), tibialis anterior (TA),
gastrocnemius (GAS) and vasti (VAS) muscle groups.
They are mainly controlled by similar reflexes as those
reported in (Geyer and Herr, 2010). Most of them
either combine a positive constant prestimulation (S0)
with positive/negative force feedbacks (F+/−), or a
local positive length feedback (L+). On top of that,
the VAS reflex is inhibited when the knee exceeds a
given threshold to prevent over-extension; or during
the double support phase of the leg entering in swing
phase, in order to allow knee flexion.
All the reflexes mentioned in this section are only

activated during the stance phase, i.e. when the ground

reaction force vertical component under one foot is
larger than an arbitrary threshold (here, 20 N). The
full sagittal stance control is presented in Figure 2a.
Further details about its implementation can be found
in Appendix E.

2.4 Leg sagittal swing control
Because swing leg motion is less affected by external
perturbations, its control mainly relies on feed-forward
stimulations provided by the CPG. First, hip flexion is
achieved by sending appropriate stimulations to the
HFL muscle. This activation already starts in late
stance, usually a bit after the contralateral foot strike,
and spans during early swing. Therefore, the CPG
network is augmented with a new pair of PF neurons:
NC and ND. As expected, their corresponding firing
rates xC and xD fire slightly after the contralateral leg
strike (see Figure 5).

Approximatively at the same time, knee bending
is achieved through proper HAM muscle activation.
Preliminary results showed that it was actually not
necessary to add a new pair of PF neurons to control it.
Indeed, the corresponding stimulations usually require
to be aligned with the existing neurons NA and
NB . Consequently, we decided to directly shape the
corresponding stimulations based on the xA and xB
neurons firing rates.

After this initial high activity, swing mainly relies on
the leg ballistic motion. Therefore, most muscles only
receive the basic tonic stimulation. Regarding reflexes,
only TA still receives a similar local positive length
feedback (L+) as the one introduced by (Geyer and
Herr, 2010), in order to increase foot clearance with
the ground.

In late swing phase, the swing leg motion is
reduced by the combined action of HAM and GLU,
participating into leg retraction. This is achieved with
a new pair of PF neurons: NG and NH . In contrast to
other PF neurons, this new pair is connected to RG
neurons N1 and N2, so that they are mainly aligned
with N3 and N4.

The sagittal swing control described in this section
is summarized in Figure 2b. Its full implementation is
described in Appendix E.

2.5 Leg non-sagittal control
Regarding the leg control in the lateral plane, the gait
cycle is only divided into two phases: the supporting
and non supporting ones. A leg supporting phase
starts with the leg own strike and finishes with the
contralateral leg strike. In other words, it corresponds
to its stance phase shortened by the terminal double
support phase.
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During the supporting phase, the hip abductors
(HAB) and adductors (HAD) muscles are mainly in
charge of controlling the torso lateral lean angle Ψt.
Similarly to the stance hip control in the sagittal plane,
a pair of PF neurons is required to provide a first
excitation to the new supporting leg, and prevent the
torso from collapsing sideways. This is achieved by the
neurons pair NE and NF , acting on the HAB muscles.

After the leg first impact, a closed-loop (i.e. reflex-
based) PD controller is in charge of maintaining the
torso lean angle Ψt close to a reference Ψref . Similarly
to what was done in the sagittal plane, the CPG
can inhibit the PD control contribution on the HAB
muscle. This inhibition is triggered according to the
CPG phase, to prevent contradictory signals between
the CPG and this balance controller. In (Song and
Geyer, 2013), a similar PD controller is proposed for
the whole stance (i.e. no CPG signal is used). The
introduction of the CPG first burst allows tuning of the
PD control parameters governing the balance dynamics
only after shock absorbance. Indeed, closed-loop angle
control appears not appropriate during the double
support phase, when the weight is transferred from one
leg to the other.
Lateral hip control during the non supporting phase

is inspired from the approach described in (Yin et al.,
2007) and used in (Song and Geyer, 2013). Basically, an
active swing foot placement is implemented based on
∆com, the lateral position of the center of mass (COM),
relatively to the supporting foot. First, a hip lateral
reference position ϕh,l,ref is computed as the output of
a PD controller on ∆com. Then, a second PD controller
tracks this reference position with the hip lateral
position ϕh,l, by sending appropriate stimulations to
the HAB and HAD muscles.

Regarding lateral foot control during the supporting
phase, the eversion (EVE) and inversion (INV) muscle
groups are in charge of maintaining the body upright
by bringing the lateral COM close to a reference
position. Again, a simple PD feedback control is
applied on ∆com, i.e. on the same input as the one
used to compute the hip lateral reference ϕh,l,ref of
the contralateral leg. During the non-supporting phase,
EVE and INV control the foot lateral orientation to
keep it aligned with the horizontal, in order to prepare
proper foot landing. The full leg lateral control is
presented in Figure 2d.
Finally, the hip transverse joint is controlled by the

hip external (HER) and internal (HIR) rotator muscle
groups. The generation of straight motion simply
requires to maintain this joint in its homing position.
Our control is illustrated in Figure 2e. All the non-
sagittal control rules are fully detailed in Appendix E.

2.6 Upper-body control
Upper-body control is less critical during walking. In
fact, preliminary experiments revealed that freezing
the upper body joints would not prevent from achieving
stable walking. However, this resulted in slower gaits,
with higher energetic consumption in the lower limbs.

The rationales governing upper body motion in
unconstrained human walking is still not clear either.
For instance, (Collins et al., 2009) explored whether
the extra cost required to swing the arms could
lead to potential benefits in the lower limbs. These
experiments showed that voluntarily holding the arms
required 12 % more metabolic energy.
Consequently, our controller also implements arm

swing motion in the sagittal plane. More precisely, the
shoulder flexion (SFL) and extension (SET) muscles
are stimulated by appropriate CPG neurons, in order
to be in phase with the gait cycle. For the sake of
simplicity, the RG neurons were directly used to drive
the corresponding muscles. Note however that extra PF
neurons might further be added for the upper-body, in
a similar way as for the lower-body. Here, SFL and
SET stimulations are designed to be in phase with the
contralateral leg motion.

The other arm muscles are the elbow extension
(EET) and flexion (EFL) muscle groups, the shoulder
abduction (SAB) and adduction (SAD) ones and the
shoulder internal (SIR) and external (SER) rotation
ones. They are all controlled with a simple feedback
controller to maintain a constant position.

Similarly to the arms swinging motion, the four RG
neurons are used to control the torso transverse joints
with the back rotation right (BRR) and left (BRL)
muscle groups. The remaining torso muscle groups,
i.e. back tilt right (BTR) and left (BTL), back flexion
(BFL) and extension (BET), use again PD control on
their respective joints to stabilize the homing position.
All these rules are summarized in Figure 2 and fully
described in Appendix E.3.

2.7 Walk initialization
Walk initiation requires the walker to move its COM
on top of one of its feet. This is achieved with the
muscle control scheme proposed in (Heremans et al.,
2016). Basically, a full-body compliant force controller
uses virtual feedback forces applied to the COM to
generate appropriate torques at the joint level (Hyon
et al., 2007). Then, the muscle model presented in
Appendix B is inverted to get the corresponding
muscle stimulations. This controller only requires the
horizontal coordinates (Xinit;Yinit) of the target COM
position. These coordinates are optimized as presented
in Table 4.
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Once the COM is above the desired foot, this COM
controller is deactivated and replaced by the main
controller described in this contribution. However, to
guarantee that the CPG quickly converges towards
its correct state, special excitations are applied
during the first 0.2 s of the gait (see Appendix D).
Similarly, special stimulations are sent to the HAB and
HAD muscles to help initial lateral hip control (see
Appendix E.1).

2.8 Optimization
In the controller development, we introduced many
parameters requiring proper tuning. They are all
listed in Table 4 with their respective bounds.
In this contribution, this tuning was performed
through an optimization phase relying on a particle
swarm optimization (PSO) algorithm (Kennedy and
Eberhart, 1995).
More precisely, each set of optimized parameters was

tested with a biped walking during a maximal time of
60 s. After this duration (or earlier if the walker fell), a
staged fitness function was computed. This means that
different objectives are sorted by order of relevance,
such that the next objective is taken into account only
when the previous one nearly reaches maximum score.
Each fitness stage is limited between 0 and 100. They
are described below.
The first stage requests the biped to walk a minimal

distance of 15 m, providing a reward proportional to
the traveled distance before falling. The main purpose
of this stage is to prevent the walker from staying in
its initial upright position. After completion of this
objective, a second stage requires the biped to walk
without falling during the 60 s simulation time, the
fitness being proportional to the walked time.
Once this objective is reached, the speed is later

optimized to match a reference. The corresponding
objective function is given in Equation (3), where f
is the stage objective function, x the parameter to be
constrained (here, the speed), x∗ is the reference and
α is a weight (set to 100 for this speed stage). This
function output is thus bounded between 0 and 100 and
presents a bell-shaped profile around the reference x∗.

f = 100 e−α (x−x∗)2
(3)

When the biped speed is in a range of 0.05m/s
around the target speed, the last three stages are
activated in parallel. The first minimizes the equivalent
metabolic energy consumption in virtual muscle
contraction per unit distance walked. This energy is
computed as detailed in Appendix B.3. The fitness
stage is computed again with Equation (3) where α
is set to 10−3, x∗ to 0 and x is the metabolic energy

consumption of both legs per unit distance walked
and normalized by the walker mass. The purpose of
this stage is not to minimize the actual electrical
energy consumption of the robot, but rather to emulate
energy saving mechanisms that are likely taking place
in real human walking. Indeed, the minimum metabolic
energy per unit distance traveled is considered as
a valid measure of walking performance, in order
to reproduce the salient features of normal gaits
(Anderson and Pandy, 2001).

The RG neurons in the CPG network offer to predict
when the next strike will happen (i.e. when x1 or
x2 will start firing). To encourage the emergence of
solutions minimizing this prediction error, the mean
error between the CPG predicted strike times and
the actual ones is computed. The second parallel
optimization stage uses Equation (3) again, with α
set to 250, x∗ set to 0 and x set to the mean of this
prediction error.

Finally, to avoid lateral leg inter-penetration, the
lateral distance between foot strikes of both legs is
also optimized. More precisely, the shorter distance
between a strike foot position of one leg and the
line passing through the last two strike positions of
the other leg is computed. The third parallel fitness
stage is computed proportionally to the average of
this distance, saturating the fitness to 0 for 9 cm and
to 100 for 14 cm. Importantly, some of the numerical
parameters presented here depend on the walker
embodiment, in this case the COMAN robot presented
in Section 3.1.

To promote the emergence of solutions with
good foot clearance with respect to the ground,
obstacles were placed below the swing foot during
the optimization. More precisely, these obstacles were
trapezoidal shapes located next to the stance foot.
Their height linearly increased with the simulation
time from 0 cm to 4 cm. Consequently, foot clearance
progressively improved when walking a longer distance.

Finally, some noise was added to the muscle
stimulations during optimization. More precisely, the
noise potential amplitude was set to 5 % of the
stimulation instantaneous amplitude, similarly to the
signal-dependent noise observed in real human signals
(Faisal et al., 2008). This noise was combined to the one
applied to the motors (see Section 3.2). To cope with
this uncertainty, each set of parameters was evaluated
three times in a row for each optimization. The average
fitness value was used, so that more robust controllers
were obtained.
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3 Embodiment and simulation
environment

To test the controller presented in Section 2, the
COmpliant huMANoid (COMAN) robotic platform
was used as embodiment. This robot and its
controller were developed in a simulation environment
reproducing the articulated body dynamics, the ground
external forces, as well as the robot motor dynamic
equations.

3.1 COMAN platform
The COMAN platform is a 23 degrees of freedom
full-body humanoid robot. This 95 cm tall robot,
weighting 31 kg, was developed at the Italian Institute
of Technology (IIT) (Dallali et al., 2013; Tsagarakis
et al., 2013). COMAN is pictured in Figure 2, along
with the reference frames used in the rest of this
contribution to describe its kinematics and dynamics.
All sagittal joints, as well as the transverse torso
and the lateral shoulder joints, feature series elastic
actuators (SEA) (Tsagarakis et al., 2009). The other
joints are actuated using traditional, stiff actuators.
Regarding the robot sensors, each joint features

position encoders, along with custom-made torque
sensors. The torque tracking is then mainly achieved
with a PI controller, as presented in (Mosadeghzad
et al., 2012). On top of that, an inertial measurement
unit (IMU) is attached to the robot waist. Finally,
custom-made 6 axis force/torque sensors are placed
below the ankle joint to measure the ground interaction
forces and torques.

3.2 Simulation environment
The simulation suite we used to model COMAN is
called Robotran (Samin and Fisette, 2003; Docquier
et al., 2013). It is a symbolic environment for
multi-body systems developed within the Université
catholique de Louvain (UCL). Its direct dynamics
module was used to generate the symbolic equations
of the robot dynamics. To further minimize the gap
between simulation and reality, a particular attention
was paid to the actuator dynamics, the signals noise
and the environment external forces, in particular
the ground contact model (GCM). Moreover, we only
used sensory signals available on the real robot (see
Section 3.1).

The actuators model was implemented as reported
in (Dallali et al., 2013) and in (Zobova et al., 2017).
To control them in simulation, we implemented a
low-level controller similar to the one outlined in
(Mosadeghzad et al., 2012). To comply with a realistic
noisy environment, a uniform noise with a maximal

amplitude of 0.4Nm was added to the actual torque
measured in the simulation environment (see also
(Van der Noot et al., 2015a)). This corresponds to
the noise level obtained from measurements with the
real platform. Consequently, the torque references
computed by the controller developed in Section 2 were
not directly applied to the multi-body system joints
(see Figure 1). Indeed, they were affected by the motor
dynamic equations and their sensory noise, as would
happen on a real robotic platform.

Regarding external forces, we used two types of
custom-made models: (i) a mesh-based model when
computing the GCM between the feet and the ground
and (ii) a volume penetration model for all other
possible contacts (mainly between the biped body and
flying projectiles, see Experiment 6). They are both
described in Appendix F.

Our simulation environment used a fourth order
Runge-Kutta integration scheme with a 250µs time
step (i.e. 16 evaluations for 1ms) to compute the
dynamics model of the robot, actuators, GCM, etc.
The controller sampling frequency was equal to 1ms.
When tested on a quad-core Intel(R) Core(TM) i7-
4790 CPU, 3.6 GHz and 16 Go RAM (using a single
core), an average time of 307ms was required to
simulate 1 s.

4 Towards a single controller for a large
range of forward speeds

The controller developed so far is capable of walking
straight in a 3D simulation environment. In this
section, this controller is incremented in order
to achieve forward speed modulation, through the
development of four experiments. First, the gait main
features are analyzed for a set of walkers optimized
for a single speed. Then, the key parameters governing
gait adaptation are studied. The controller is later
incremented to generate speed adaptations and to
investigate the resulting gait features. Finally, forward
speed modulations are actually reported.

4.1 Experiment 1: gait features changing as a
function of the speed

The evolution of the following gait features is analyzed,
based on the forward speed: (i) the metabolic energy
consumption, (ii) the stride frequency, and (iii) the
stride length. To do so, eleven speed references are
investigated, corresponding to the range [0.4; 0.9]m/s
with a step of 0.05m/s. Ten optimizations are
performed for each investigated speed, resulting in
ten different sets of optimized parameters, due to
the heuristic of the PSO algorithm (Kennedy and
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(a) energy sagittal muscles
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(b) energy lateral muscles
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(c) energy transverse muscles
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(d) stride frequency
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Figure 6. In panels (a), (b), (c), the metabolic energy consumption per unit distance for the right leg is computed, for the
muscles acting in the sagittal (panel (a)), the lateral (panel (b)) and the transverse (panel (c)) planes, respectively. Panel (d)
shows the stride (i.e. two steps) frequency. Panel (e) shows the stride length. Ten controllers are optimized with no speed
adaptation (labeled single speed) for each speed reference (Experiment 1). Ten other controllers are optimized (labeled
adaptive), with the ability to adapt their speed on the whole speed range (Experiment 3). For each speed, the mean and the
standard deviations (each time from the ten corresponding controllers) of the different measures are pictured.

Eberhart, 1995). The resulting controllers are labeled
as the single speed controllers. The mean and standard
deviations of their metrics are displayed in Figure 6.
The virtual metabolic energy consumption (Figures

6a, 6b and 6c) is computed for the right leg muscles, as
detailed in Appendix B.3. Similar values are obtained
for the left leg. As stated in Section 2.6, upper-body
control is not the main focus of this contribution and
barely contributes to the resulting gait. Therefore, its
energy consumption is not studied.

The reported energy is actually normalized to the
traveled distance. Interestingly, its value decreases
with the robot forward speed. Sagittal muscles have
the highest metabolic consumption, since they are
the main muscles used to propel the body forward.
However, the lateral muscle consumption is of the
same order, due to the important efforts requested
at the hip level during the stance phase. Surprisingly,
transverse muscles energy consumption is also of the
same order, while their only purpose was to keep the
leg straight. The reason is that important gains are
used for the corresponding PD controller, generating

high co-contraction. A possible improvement would be
to optimize these gain parameters.

Regarding the stride analysis (Figures 6d and 6e),
an increase in the forward speed results both in an
increase of stride frequency and length. This is coherent
with human analysis: faster walking speeds usually
correspond to faster walking frequencies and longer
step lengths (Murray et al., 1966). For slow speeds,
the evolution of the stride frequency is less significant
than the one of the stride length. This indicates that
the optimizer favors stride length modulation over
frequency modulation for slow speeds.

4.2 Experiment 2: speed key parameters
Following the proximo-distal hypothesis (Daley et al.,
2007), speed modulation is mainly performed by the
leg proximal muscles, i.e. the ones close to the hip.
In particular, the introduction of a CPG is useful for
this purpose, since it modulates the locomotion by
simple control signals (Ijspeert, 2008). This section
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investigates which control parameters could play a
significant role in forward speed modulation.
Step frequency is directly related to the CPG

frequency, which can be modulated using the time
constant τ . Indeed, this value is proportional to
the Matsuoka oscillators period (Taga et al., 1991).
As reported in Section 2.8, the CPG frequency
is optimized to match the gait resulting closed-
loop frequency. Other potential parameters for speed
modulation include the CPG amplitude output signals.
They are controlled by the gains kHFL, kGLU,1, kGLU,2,
kHAM,1, kHAM,2, kHAM,3 and kHAB multiplying the
CPG outputs (see Appendix E.1).
Moreover, faster speeds usually involve larger torso

tilt, as reported in (Song and Geyer, 2012). Therefore,
the target torso angles θref (sagittal plane) and Ψref

(lateral plane) are also good candidates for modulating
the forward speed. Finally, the lateral swing foot
placement (being controlled by the parameter Λref,h)
might also be dependent on the speed. Therefore, all
these parameters are studied for speed modulation.
The influence of these eleven key parameters on

the walking speed was analyzed as follows. An
optimization was performed for a single speed of
0.65m/s, i.e. in the middle of the target speed
range of Figure 6 ([0.4; 0.9]m/s). Then, all the
optimized parameters were frozen, except the eleven
key parameters mentioned above. The speed range was
discretized with a step of 0.05m/s. For each target
speed (including 0.65m/s again), ten optimizations
were performed, initiating the gait with the eleven
key parameters corresponding to the initial speed
(0.65m/s), before switching to new ones after four
steps. The evolution of these optimized parameters is
reported in Figure 7 (except for the target speed of
0.4m/s, which did not produce suitable gaits in this
experiment).
Intuitively, the evolution of most of these key

parameters with forward speed can be approximated
with polynomial functions, whose orders have to be
properly selected to capture the curve without over-
fitting. To do so, a model goodness-of-fit analysis using
the sum of squared values of the prediction errors
(Smith and Rose, 1995) was performed, as detailed in
Appendix G.

Resulting p-values are presented in Table 1. The
corresponding null hypothesis is that the model fits
the data. Its rejection (i.e. too small p-value) indicates
an overall lack of fit regarding the order selected for
regression. Fixing and arbitrary threshold to 0.1, the
lowest order with a p-value exceeding this threshold
was selected as being appropriate for the fit. This is
a less strong analysis than rejecting the opposite null

hypothesis, but is considered to be sufficient to design
the control rules.

Table 1. This table reports the polynomial approximations
of orders 0, 1 and 2 of the data provided in Figure 7, based
on the least square errors. Each p-value is then computed as
detailed in Appendix G. The first order with a p-value larger
than 0.1 is then selected (grey cells).

order 0 order 1 order 2 selected
τ 0 0.002 0.968 2
kHF L 0 0.211 0.218 1
kGLU,1 0 0.002 0.015 ∅
kGLU,2 0.115 0.099 0.293 0
θref 0 0.463 0.649 1
kHAM,1 0 0.32 0.517 1
kHAM,2 0 0.022 0.169 2
kHAM,3 0 0.146 0.528 1
Ψref 0.2 0.159 0.727 0
kHAB 0 0.028 0.162 2
Λref,h 0 0.063 0.958 2

Interestingly, these results are close to the ones
reported in (Van der Noot et al., 2015b). In this
earlier contribution, similar graphs were obtained when
restricting the walker to stay in the 2D sagittal plane,
while exploring the evolution of a subset of six of the
key parameters.

As expected, the time constant τ decreases (and
so the frequency increases) with higher speeds. This
correlation obeys a parabolic trend, while we reported
a linear one in 2D (Van der Noot et al., 2015b). On top
of that, the corresponding frequencies are larger in 3D
than in 2D, for the same speed references. This is due
to the lateral balance, which is easier to maintain with
shorter step durations. Also, variations of τ are larger
for higher speeds. This indicates that the optimizer
favored step length modulation for slow speeds and
step frequency modulation for higher speeds. This is
coherent with the observations made in Experiment 1.

During the stance phase, kGLU,1 and kHAM,1
were both recruited to bring the torso back to its
reference inclination after foot strike. This requires
higher stimulations at higher speeds, due to larger
inertia effects and strike impacts. This explains why
these gains increase with higher speeds. Note that
Table 1 reports that the polynomial fits did not
reach significance for kGLU,1. Since this parameter is
redundant with kHAM,1, this was considered to be
not critical. For this parameter, we arbitrary chose a
polynomial approximation of order 1. In the lateral
plane, kHAB is sightly larger in the middle of the speed
range, indicating a stronger torso lateral stabilization
for the corresponding speeds.

During the early swing phase, hip flexion increases
for higher speeds. Consequently, the HFL muscles
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(c) Stimulation gain kGLU,1
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(d) Stimulation gain kGLU,2
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(e) Sagittal torso reference θref
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(f) Stimulation gain kHAM,1
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(g) Stimulation gain kHAM,2
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(h) Stimulation gain kHAM,3
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(i) Lateral torso reference Ψref
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(j) Stimulation gain kHAB

0.4 0.5 0.6 0.7 0.8 0.9

speed (m/s)

7.0

7.5

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Λ
r
e
f
,h
(c
m

)

(k) COM reference Λref,h

Figure 7. Results of Experiment 2: ten optimizations are performed for each target speed (from 0.45 m/s to 0.9 m/s with
an interval of 0.05 m/s).The actual speed of each solution is measured, along with the optimized value of the eleven open
key parameters. For each target speed, we gather the ten optimization final results, reporting their mean and standard
deviations. For graph legibility, the error bars represent half of the standard deviations. Dashed lines correspond to the
polynomial approximations whose order is computed in Table 1, using the minimum mean square error method.

receive higher stimulations (with kHFL increasing)
while their antagonist muscles HAM get lower
stimulations (with kHAM,2 decreasing). In late swing,
kGLU,2 and kHAM,3 are used to favor leg retraction,
which reduces the walking speed. This explains why
kHAM,3 decreases. However, no significant modulation
is observed for kGLU,2, probably due to its redundancy
with kHAM,3. Globally, the CPG output modulation
conveys similar conclusions as the ones we drew in the
2D case (Van der Noot et al., 2015b).

Regarding reflexes, the torso sagittal lean angle
reference θref increases linearly with speed, as in
(Van der Noot et al., 2015b). Its lateral reference Ψref

however does not display a significant modulation, due
to its high variance. Finally, the COM reference Λref,h
driving the lateral swing hip is minimal in the middle
of the speed range. This is coherent with the kHAB
evolution. Indeed, a higher kHAB generates a higher

momentum, accelerating the COM towards the swing
leg (Patla et al., 1999). To counter it, the swing foot
must be placed further away, inducing a smaller Λref,h.

4.3 Experiment 3: a single controller for the
whole speed range

The controller design can now be further extended to
generate any forward speed in the [0.4; 0.9]m/s range.
The eleven key parameters studied in Experiment 2 are
replaced by polynomial functions whose order is chosen
according to Figure 7 and Table 1 (except for kGLU,1).
Because the modulation of kGLU,2 and Ψref are
actually of order 0, the corresponding parameters are
constants. The speed modulation is then fully achieved
with nine parameters: seven CPG parameters and two
reflex parameters, as a function of the target speed (see
Table 4). The four initial steps are performed with a
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speed reference vref set to 0.65m/s, in order to achieve
walk initialization. Then, vref can be changed to any
value in the speed range, at any moment in the gait.
This high-level control is depicted in Figure 1.
New optimizations were thus performed with the

whole range of forward speed being embraced within
a single trial. More specifically, eleven target speeds
were selected (from 0.4 to 0.9m/s with a step of
0.05m/s). Then, the same optimization process as the
one described in Section 2.8 was performed to find
the whole parameters set (including the coefficients
capturing the modulation of the nine parameters
changing as polynomial functions of the forward
speed). More precisely, each optimization received this
whole parameter set and a range of target speeds vref
to test (see Table 4). The resulting fitness value was
computed as the average of all the fitness functions
of each tested target speed. This co-optimizes all the
parameters within a single optimization, leading to
more efficient gaits and larger speed ranges than those
presented in Figure 7.
Ten heuristic optimizations were performed using

this approach. They resulted in ten different sets
of optimized parameters. The ten corresponding
optimized controllers (called adaptive controllers and
capable of reaching any forward speed in the
[0.4; 0.9]m/s range) were evaluated similarly to the so-
called single speed controllers (i.e. controllers optimized
for a single speed) from Experiment 1 (see Figure 6).
Since no parameter was optimized in the transverse

plane, the corresponding energetic consumption was
similar for the single speed controllers and the adaptive
ones. In the other planes, the single speed controllers
turned out to be more efficient than the adaptive
ones. However, given that the adaptive controllers were
optimized for a large range of speeds in a single shot
and not tuned for a precise gait, this small pay-off
regarding energetic cost seems a reasonable price to
pay. Regarding step size analysis, the single speed
controllers favor higher frequencies and shorter steps
than the adaptive ones. However, these differences are
rather small.

The standard deviations in Figure 6 are usually
larger for the single speed controllers than for the
adaptive ones. This indicates that the gaits (and
underlying parameter sets) resulting from different
optimizations are more similar when optimizing the
whole range of forward speeds in a single trial.
Globally, the sagittal energetic consumption and
the step frequency display the highest deviations
(relative to their respective ranges) between different
optimizations. However, the global evolution of all
these features with the speed remains close between

the different optimization runs. So, while in principle
there could have been multiple local minima in the
search space, the optimizations tended to converge to
similar optimal parameter sets and resulting gaits.

4.4 Experiment 4: forward speed modulation
Among the adaptive controllers of Experiment 3, we
select one of them and refer to it as the reference
controller. In the rest of this contribution, we only
report results that were obtained with this controller
(i.e. corresponding to the same set of optimized
parameters in the whole paper). This controller is
available in Extension 6.

The forward speed of the robot can be controlled on-
line by adapting the speed reference vref . The speed
modulation achieved with the reference controller on
COMAN is visible in Extension 1 and in Figure 8.

In this experiment, the target speed is modulated
in the full range, i.e. from 0.4m/s to 0.9m/s. The
resulting speed (post-processed with a running average
of 1 s) can follow this reference with accelerations up
to ±0.25m/s2. This represents less than two strides to
go from one speed extremum to the other.

5 Comparisons to an inverted pendulum
controller and to human data

The gait obtained from this neuromuscular controller
can be compared to both human data and to gaits
resulting from more traditional controllers, typically
using inverse kinematics or dynamics transformations
to compute position or torque references at the
joint level (Fitzpatrick et al., 2016). Therefore, the
gait of our reference controller is compared to the
one resulting from a more traditional linear inverted
pendulum (LIP) controller and to human data.
These comparisons are performed on kinematics and
dynamics data in steady state. Correlations between
our muscles activations and surface electromyography
signals (EMG) extracted from human data are also
reported. Finally, comparisons to the LIP-based
controller are further extended by analyzing the
energetic consumption.

5.1 Experiment 5: steady state gaits
comparisons

Among the controllers relying on inverse modeling,
we selected the one reported in (Faraji et al.,
2014b). In that paper, a LIP-based torque controller
could achieve gait modulation on the simulated
COMAN. Using the same embodiment as ours offers
to make direct comparisons with our own results
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(a) Forward speed modulation
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Figure 8. Panel (a) pictures snapshots of an experiment where the robot forward speed is modulated. Panel (b) displays the
tracking of the target speed vref (dashed line), where the robot actual forward speed (solid line) is post-processed with a
running average of 1 s. The time interval during which the snapshots of panel (a) are taken is also displayed. A video of the
corresponding experiment is provided in Extension 1.

(labeled neuromuscular). Importantly, this LIP-based
controller generates slower gaits than the ones obtained
with our neuromuscular model. Therefore, these
comparisons are not ideal but remain valuable to
provide a benchmark comparing our controller to more
traditional approaches.
To compare these results with human measurements,

we use the data from (Bovi et al., 2011). In that
contribution, measures were performed on twenty adult
subjects. This includes the temporal evolution of joint
positions, torques, ground contact forces and EMG
signals. We selected the data set with subjects walking
at their natural (i.e. unconstrained) speed.

The average speed of the twenty adult subjects in
(Bovi et al., 2011) was equal to 71.36 %BH/s, where
BH stands for body height. Considering that COMAN
height would be close to 1.06m if it had a head, this
corresponds to a speed of 0.75m/s. Therefore, data for
the neuromuscular controller was extracted from our
reference controller walking with this reference speed.
The LIP-based controller of (Faraji et al., 2014b) is not
capable of reaching such a high speed. Consequently,
the data presented from its resulting gait were obtained
when walking close to its maximal speed, i.e. 0.31m/s.
It should also be noted that the LIP-based controller
does not include a model of the electrical actuators,
therefore bypassing the noise component introduced
in Section 3.2. The following sections report different
measurements performed on this experiment.

5.2 Kinematics and dynamics
The position and torque profiles extracted from
Experiment 5 are displayed in Figure 9, where
the data obtained with COMAN (i.e. the LIP and
neuromuscular controllers) were averaged over twenty

consecutive gait cycles (right leg). We computed the
cross-correlation coefficient between each controller
gait and the human data shifted in time. More
precisely, we tested 100 time shifts equally spaced
between 0 % and 100 % of the gait cycle. Here,
we report the maximum of these cross-correlation
coefficients, namely R and the corresponding time
shifts ∆ in percent of stride (Wren et al., 2006).
The sagittal joint kinematics globally shows good

matching for the neuromuscular model (ankle: R =
0.8,∆ = −9%; knee: R = 0.95,∆ = 0%; sagittal hip: R =
0.97,∆ = 0%), although this is lower for the ankle than
the hip and knee. This might be due to the rigid
foot used on our model, different from the human
one. Indeed, in (Colasanto et al., 2015), replacing the
robot rigid foot by a model of a human prosthesis
led to more robust gaits. This is a possible future
improvement for our experiments. The lateral hip
kinematics corresponds to a low correlation (R =
0.57,∆ = −35%). However, the corresponding human
motion is rather small and displays a large variance.
Therefore, this low correlation is more difficult to
interpret.

The correlations obtained with the LIP-based
controller are systematically lower than with the
neuromuscular controller, in the sagittal plane (ankle:
R = 0.32,∆ = −40%; knee: R = 0.87,∆ = −6%; hip: R =
0.93,∆ = 0%) and significantly better in the lateral
plane (hip: R = 0.93,∆ = −5%). In particular, there is
a large offset in the sagittal ankle and knee angles.
This behavior (bended knee walking) is typical of most
humanoid gaits. The main reason is usually related to
the deterioration of their controllers in configurations
involving a singularity (Kurazume et al., 2005).

Interesting observations can also be reported from
the torque cross-correlations. For the neuromuscular
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Figure 9. Kinematic and dynamic profiles of Experiment 5: the human data from (Bovi et al., 2011) (natural speed) is
compared to our neuromuscular controller (0.75m/s) and to the LIP-based controller (0.31m/s) from (Faraji et al., 2014b).
The averages of the different measures are displayed over one gait cycle (starting at right foot strike), augmented by their
standard deviations (shaded areas).

controller, the matching is good for the sagittal ankle
and lateral hip joints, but not for the two other
joints (ankle: R = 0.92,∆ = −5%; knee: R = 0.24,∆ =
82%; sagittal hip: R = 0.53,∆ = −3%; lateral hip: R =
0.89,∆ = 5%). The ankle plantarflexion is also of
smaller magnitude. As previously mentioned, this
might also be due to the lack of compliance in the foot
being simulated.

The lower correlations for sagittal knee and hip are
also observed in (Geyer and Herr, 2010). Human knee
torque mainly oscillates around the zero axis during
the stance phase. This is also the case in our model,
although this oscillation is like in anti-phase. In Figure
9b, a small knee flexion is observed after strike, only
for human data. To prevent from collapsing, humans
thus apply an initial extension torque. In our model,
the opposite happens: heel strike is followed by a slight
knee over-extension, counteracted by a flexion torque.
Regarding the sagittal hip, the main difference is the
larger extension torque after strike, to prevent the torso
from collapsing. However, it should be noted that other
contributions reported human data displaying a similar
large extension torque (Zelik and Kuo, 2010; Riener
et al., 2002). This is likely highly dependent on the
location of the hip center of rotation, which might also
explain our own results. Yet, these bumps usually do
not exceed 0.8Nm/kg, indicating that our first hip
reaction is above any human data.

The LIP-based controller torques show similar
correlations with human data, except for the sagittal
ankle (ankle: R = 0.89,∆ = 29%; knee: R = 0.71,∆ =
−19%; sagittal hip: R = 0.66,∆ = −1%; lateral hip: R =
0.98,∆ = 5%). The ankle torque in the sagittal plane
shows a large phase shift regarding the peak in the
stance phase. This is due to the lacking heel-toe motion
and toe push-off. The lower variances can be explained
by the lack of modeling of the motor dynamics and
simulation noise.

Figure 10 shows the vertical ground reaction forces
(GRF) measured during the same experiments. In
particular, human data displays an M-shaped pattern,
i.e. a well-known feature of human walking gaits. In
contrast, the LIP-based controller exhibits a nearly flat
profile during its stance phase, and initiates its swing
phase earlier. On the contrary, the neuromuscular
controller stance phase is better aligned with human
data and displays oscillations in the GRF amplitude.
However, the corresponding pattern differs from the
human one. This discrepancy is probably due to the
use of rigid feet in our experiment (and so to the lack
of damping at strike impact), in contrast to human
feet. Other possible reasons include the lack of toes,
the foot length being shorter than the human one, and
the knee over-extension issue previously mentioned.
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Figure 10. Vertical GRF profiles of Experiment 5 (right leg),
normalized to the body weight (BW). Both the LIP-based
and neuromuscular data are post-processed with a running
average of 50ms.

5.3 Muscle activations
Similarly to (Geyer and Herr, 2010), activations con-
trolling the virtual muscles (neuromuscular controller)
can be compared to real human EMG signals. Figure 11
reports this comparison for the following muscles: (a-b)
soleus, (c-d) tibialis anterior, (e-f) gastrocnemius medi-
alis, (g-h) vastus medialis, and (i-j) gluteus maximus.
The SOL and GAS muscle groups feature high cross-

correlations coefficients, although with a significant
phase shift (SOL : R = 0.96,∆ = −14%; GAS : R =
0.96,∆ = −13%). This shift corresponds to the one of
Figure 9 for the joint being controlled by these two
muscles, namely the sagittal ankle. Once again, this
might be related to the lack of compliance in the
foot, affecting the push-off phase. Correlations for the
other muscles are typically lower (TA : R = 0.69,∆ =
58%; V AS : R = 0.7,∆ = −15%; GLU : R = 0.76,∆ =
−3%). The stance activations are usually displaying
a reasonable matching. During swing however, our
virtual muscles are nearly silent because the legs rely
on ballistic motion. This is not the case in the reported
human measurements.

5.4 Energetic consumption
In order to compare the energetic consumption of
the neuromuscular controller to the LIP-based one,
the square of the joint torques are integrated over
one gait cycle. Figure 12a reports the different joint
contributions for the right leg (the left leg results
are identical). As indicated in Section 2.6, the upper-
body motion barely contributes to the gait and is
therefore not included in this analysis. In contrast
to the previous analyses, the measurements were
performed with the neuromuscular controller over its
whole range of forward speeds. The gaits resulting
from the neuromuscular controller are compared to the
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Figure 11. Muscle activation profiles of Experiment 5: the
activations obtained with COMAN (neuromuscular
controller) are compared to EMGs measured on walking
humans (Bovi et al., 2011). Due to the high variances of
these signals, only their average is reported. The dashed line
reports the transition from stance to swing.

highest speed (0.31m/s) obtained with the LIP-based
controller (i.e. same gait as in Figure 9).
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Figure 12. Estimate of the energetic consumption of both controllers tested in Experiment 5. Panel (a) reports the sum of
square of the joint torques for the LIP-based controller (hatched) and the neuromuscular one (non-hatched), both integrated
over one gait cycle, i.e. one stride. The measures were performed on the right leg at different speeds, and averaged over 20
gait cycles. The contributions of each joint correspond to different colors (see legend). Panel (b) displays the same result,
normalized by the distance traveled during one gait cycle.

Globally, the neuromuscular controller displays lower
torque profiles than the LIP-based one, when walking
slower than 0.64m/s. As expected, the LIP-based
controller recruits large torques at the knee level, due
to the fact that this joint stays bended during the whole
stance phase. The neuromuscular model, however,
recruits smaller knee torques, but requires much higher
torques at the sagittal hip joint (increasing with speed).
This is coherent with the observations reported in
Figure 9.
Torques produced by the ankle in the sagittal plane

are also far less important with the neuromuscular
controller, especially at slow speeds. The hip torque in
the lateral plane are larger with the LIP-based model.
Finally, the remaining joints torques are negligible.
In particular, the high virtual metabolic energy
consumption of the transverse hip (see Figure 6c) does
not translate in higher torques.

However, this analysis did not take the traveled
distance into account. In Figure 12b, the same results
are displayed, with a normalization by the stride
length. Interestingly, the total square torque for the
neuromuscular model is quite constant as a function
of the forward speed. In particular, the increase in
the sagittal hip torque is compensated by the extra
traveled distance. This analysis strongly penalized the
LIP-based controller since its normalized sum of square
torques is about more than twice larger than the one
of the neuromuscular controller.

6 Gait robustness
The following section reports experiments with the
robot walking blindly (i.e. with no perception of
its environment), using the reference controller. Its
robustness was tested against external pushes, stairs,
slopes and irregular grounds (on top of the simulator
noise). During all these experiments, no parameters
modulation was applied to the controller.

6.1 Experiment 6: resisting to pushes
First, the following experiment was performed.
COMAN received random pushes on the torso when
walking at different speeds. These pushes were applied
with a magnitude between 0N and 30N during 0.2 s
in the transverse plane. Ten pushes were applied with
a time interval randomly selected between 5 and 6 s.
Each push orientation in the transverse plane was
randomly selected in the ] − π;π] interval (i.e. all
possible directions selected with an equal probability).
Robustness was quantified by counting the number of
pushes the robot could sustain without falling.

This result is reported in Figure 13a, for
the [0.4; 0.9]m/s speed reference range (with a
discretization of 0.05m/s). Globally, higher speeds can
resist higher pushes. The only exception is the maximal
speed (i.e. reference of 0.9m/s), which was less stable.
Indeed, less stable gaits were usually obtained for the
extrema of the tested speed range.
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Figure 13. For the whole spectrum of speed references,
COMAN faced two kinds of external disturbances. In
panel (a), pushes were applied on its torso (Experiment 6).
The color map represents the number of pushes the robot
resisted (averaged over five runs) before falling, as a function
of the pushes amplitude. In panel (b), COMAN was walking
on the irregular ground displayed in Figure 17
(Experiment 9). The values of the corresponding Hi heights
were randomly selected in the range whose maximum value is
reported on the vertical axis. The color map represents the
forward distance (i.e. along the x axis [m]) COMAN walked
before falling (limited to 10 m and averaged over five runs).

Another illustration of the robot resistance to
external pushes is provided in Extension 2. In
this experiment, COMAN walked with the reference
controller at a speed of 0.65m/s. During walking,
ten balls with a density of 750 kg/m3 were thrown
to it. In particular, after absorbing a ball push, the
walker can recover its previous gait, thanks to the CPG
entrainment (Ijspeert, 2008).

6.2 Experiments 7 and 8: natural adaptation
to stairs and slopes

Experiment 7 established the capacity of the robot
to adapt to ascending and descending (small)
stairs. This is presented in Extension 3, with the
reference controller walking with a speed reference of
0.85m/s. Snapshots of this experiment are displayed
in Figure 14. The corresponding stair is made of five
ascending and five descending steps, each with a width
of 50 cm and a height of 2 cm. This performance is
similar to the one of (Geyer and Herr, 2010), pending
a scaling to our robot size. Interestingly, our controller
can even adapt when its foot lands between two
consecutive stair steps, as can be seen in Figure 14.
Similarly, Experiment 8 tested the robot ability

to adapt to ascending and descending slopes. In
Extension 4, COMAN walks blindly with a speed
reference of 0.85 m/s on a flat ground before facing
a rising slope of 2.58◦. Snapshots of this experiment
are provided in Figure 15.

Similar results were obtained on the whole speed
range, as reported in Figure 16. There is no global trend
for descending slopes. Generally, COMAN can walk
on negative slopes with an angle smaller than −2.29◦

(−4%). For rising slopes, a clear correlation appears
with the forward speed. As can be seen in Figure 15,
the walker naturally decreases its step length (and so
its speed) when climbing a positive slope. Therefore, a
higher initial speed can withstand larger slopes. With
its maximal speed reference, COMAN can climb slopes
up to an angle of 2.58◦ (4.5%). This is similar to the
results reported in (Geyer and Herr, 2010).

6.3 Experiment 9: natural adaptation to
irregular grounds

In Experiments 7-8, the walker robustness was tested
when facing uneven grounds with regular patterns
(i.e. stairs and slopes). This experiment quantifies its
robustness to irregular grounds. The description of
the corresponding ground is presented in Figure 17.
Different grounds can then be tested with randomly
selected heights Hi.

In Extension 5, COMAN walks on this ground
(with a speed reference of 0.65m/s), where the Hi

heights were randomly selected in a range of [0; 25]mm.
Figure 13b reports the result of this experiment over
the whole speed reference range and for different
maximum obstacle heights. Similarly to the results of
Experiment 6, higher speeds produced more robust
gaits, except for the maximum speed (0.9m/s),
intrinsically less stable.

7 Discussion
The work presented in this manuscript offers an
alternative locomotion controller for humanoid robots.
The controller can generate gaits across a range
of speeds close to the normal human walking one,
by recruiting virtual muscles controlled by CPG
and reflex signals. By embracing the concept of
limit cycle walking, it relaxes constraints inherent to
more traditional locomotion controllers. In particular,
singularity configurations like stretched legs can be
reached, generating faster and more energetically
efficient gaits.

7.1 Interest of the bio-inspired approach
While using (virtual) muscles might seem natural
when working on real human models or on animation
characters, it is less obvious for humanoid robots
equipped with electrical actuators. This paper showed
that using muscles as an intermediate layer offers
several interesting properties: (i) the virtual muscles
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Figure 14. Snapshots from Experiment 7: COMAN walked blindly on an ascending and descending stair. Step length was
automatically adapted to the environment, without changing the controller. At the end of the stair, COMAN retrieved its
initial gait, thanks to the CPG. Extension 3 reports the whole experiment.

Figure 15. The figure displays snapshots of Experiment 8,
where the robot faced a slope (here, 2.58◦). It automatically
adapted its step length, with no change in the controller.
Extension 4 reports the whole experiment.
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(a) negative slopes

0.4 0.5 0.6 0.7 0.8 0.9

speed reference (m/s)

0.0

0.57

1.15

1.72

2.29

2.86

3.44

4.01

s
lo
p
e
 a
n
g
le
 (
d
e
g
)

0

2

4

6

8

10

(b) positive slopes

Figure 16. Results from Experiment 8: for the whole
spectrum of speed references, COMAN faced grounds with
slopes of different angles (from 0◦ to 4◦ with a discretization
of 0.29◦, for positive and negative angles). The color map
represents the distance traveled on the slope (in [m]) before
a possible fall (limited to 10m and averaged over five runs).

generate continuous torques, being smooth to track
for the low-level torque controller; (ii) human-like
gaits can be obtained by minimizing the metabolic
consumption of these virtual muscles (see Section 2.8),
in a way likely similar to what humans do; (iii) this
configuration - being similar to the one of a human
- provides the ideal framework for comparing our
model to human data, including the level of muscle
activations; and (iv) the walker benefits from the

Figure 17. Description of the irregular uneven ground
generated for Experiment 9. Each triangle composing the
ground mesh is based on a rectangle of size d× w with four
randomly selected heights Hi at its corners (d = w = 50 cm).

viscoelastic muscle properties, i.e. human-like joint
impedance. Regarding this last point, the exact effects
of the muscular viscoelastic properties still need to
be quantified, which is a potential topic for follow-
up work. Finally, note that minimizing the metabolic
consumption of virtual muscles (point (ii)) is not a
priori equivalent to minimizing the robot’s electrical
energy consumption. However, the same optimization
tool could be used to minimize this electrical energy
consumption (i.e. maximizing the actuators efficiency)
by replacing the metabolic energy measure by the
electrical consumption of the motors. Future work
will explore the influence of this regarding the gait
kinematics and robustness.

Experiment 5 further showed that it was possible
to drastically reduce the joint torque contributions
with the proposed method, in comparison to more
traditional controllers. This could potentially lead to
important energetic cost reductions during locomotion.
However, this was tested on two very different
speed ranges. More specifically, the highest speed
of the LIP-based controller of (Faraji et al., 2014b)
was close to the lowest one of our neuromuscular
controller. Therefore, an alternative approach would
be to use both of these controllers on the same
robotic platform, pending the implementation of a
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transition mechanism as a function of the forward
speed. In particular, the neuromuscular controller
is likely more appropriate to quickly and efficiently
reach a desired spot. A controller recruiting foot
step planning would in contrast be more appropriate
when accurate positioning is requested. Alternatively,
the proposed neuromuscular controller could also be
extended to generate slower walking speeds.
Last but not least, this approach is also advanta-

geous regarding computational cost. A single iteration
of our neuromuscular controller (i.e. CPG + reflexes
+ virtual muscles) requested an average time of 61µs
to be computed (on the same computer as the one
reported in Section 3.2). This is more than 16 times
faster than the COMAN controller sampling rate,
namely 1ms. In contrast, many existing locomotion
controllers use demanding computations of inverse
kinematics and/or dynamics. This often leads to criti-
cal issues to fulfill the real-time constraints.

7.2 Robustness to unperceived environments
Gait robustness is one of the major issues preventing
robots from being used in unknown environments. In
particular, many biped locomotion controllers require
an accurate dynamic model of the robot, resulting
in poor robustness when there are errors in this
model. Other approaches, like the virtual model control
proposed in (Pratt et al., 2001) require however no
dynamic model of the robot to achieve robust gaits
during blind walking.

Here, the blind walking experiments performed
on the COMAN platform demonstrated impressive
robustness when walking in perturbed environments.
In particular, the viscoelastic muscle properties
commanded by the combined action of the CPG and
the reflexes could automatically adapt the gait to
various perturbed environments. Importantly, this was
achieved without changing a single parameter of the
controller. A perfect knowledge of the environment was
therefore not requested, which is a key advantage in
order to bring humanoid robots in our natural day-to-
day life. Using the CPG as a central element, the robot
could return to its normal gait after perturbation. This
was particularly outlined in Experiments 6-9.

The controller could be further extended to detect
possible falls and trigger additional reaction primitives.
In (Li et al., 2015), an energy-based fall prediction
method is presented for this purpose. Similar strategies
could likely allow the walker to withstand higher
perturbations than the ones performed in the blind
walking experiments.

7.3 Gait modulation
Motion diversity control (e.g. deliberate obstacle
avoidance) might be easier to achieve with more
traditional methods relying on inverse kinematics or
inverse dynamics. However, similar motion diversity
can also be found when using neuromuscular models.
For instance, (Desai and Geyer, 2013) revisited the
model of (Geyer and Herr, 2010) in order to control the
swing leg placement. This model was further extended
in (Song and Geyer, 2015) to avoid obstacles by
increasing the foot ground clearance or the step size.
Similar performances can also be obtained with CPG
modulations, as we reported in (Van der Noot et al.,
2015b), with the objective to step over a hole.

In this contribution, we showed that the inclusion of
a CPG could modulate the forward speed by adapting
nine key control parameters as linear or quadratic
functions of the target speed. This resulted in high
speed variations, over a range close to the normal
human one, when scaled to the robot size. Because
both the step frequency and length are adapted, it
provides full control of the foot step placement, in
order to avoid small obstacles. However, a high-level
controller (see Figure 1) modulating the CPG inputs
to generate desired gait alterations was not explored
and is a potential avenue for future developments.

7.4 Parallels with human locomotion
Experiment 5 showed that this controller could also
be used to investigate models of human locomotion.
This was examined through comparisons with human
kinematics and dynamics measurements, as well
as EMG signals. Our controller recruited Hill-type
muscle models commanded by reflexes, and Matsuoka
oscillators, which are components developed on a solid
biological background. Our CPG network was divided
into two parts: the "rhythm generator" neurons and
the "pattern formations" ones. Using a similar two-
level CPG biological architecture, (McCrea and Rybak,
2008) reproduced results observed in experiments
of fictive locomotion with decerebrated cats. Our
approach also followed the proximo-distal hypothesis
which was verified by (Daley et al., 2007) on avian
bipeds. In other words, muscles close to the hip mainly
received feed-forward signals (i.e. from the CPG) while
the distal muscles (being highly load-sensitive) received
feedback activations (i.e. reflexes).

Using this structure, the modulations of the CPG
frequency and amplitude, together with two reflex
parameters, led to large forward speed variations and
step modulation, as shown in Experiments 3-4. So,
similarly to the work performed by (Taga, 1994),
(Paul et al., 2005) or (Rossignol et al., 2006), this
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contribution also supports the assumption that CPGs
could play a major role in human locomotion, at least
for gait modulation.
Importantly, the recruitment of CPGs to control

the walking of most vertebrates is widely accepted,
but the neural circuitry generating human locomotion
is still not entirely unveiled (Dzeladini et al., 2014;
Minassian et al., 2017). The work of (Geyer and
Herr, 2010), further extended in (Song and Geyer,
2015), obtained similar results as ours, although they
implemented only reflex pathways (i.e. without CPG).
Therefore, the recruitment of CPG networks during
human locomotion remains a matter open to debate.

While many studies use a deductive approach to
understand human locomotion (Lacquaniti et al.,
2012), this contribution offers a synthesis approach
to test hypotheses on human walking. In particular,
this is potentially valuable to provide insights about
neural and orthopedic disabilities, by understanding
their effects on walking, and thus possibly contributing
to develop new treatments. Yet, it is important to note
that the musculo-skeletal model developed here is a
high-level approximation of control principles found in
human motor control, not an accurate computational
neuroscience model.

Divergence with real human data could possibly
lead to model refinements, with the purpose to better
explain human locomotion mechanisms. For instance,
the large torque peak experienced by the sagittal hip
after foot strike could be reduced by the introduction
of a stance preparation phase. Indeed, this lack
of preparation resulted in an insufficiently damped
impact and thus in a large forward torso tilt, as
explained in (Geyer and Herr, 2010).

Non-sagittal leg control could also be improved by
taking inspiration from human strategies. For example,
humans use the hip internal rotation, even in straight
walking. This advances the swing leg and increases
the step length (Stokes et al., 1989). A possible
improvement of our controller would be to integrate
this mechanism. Also, the hip lateral position could
sometimes bring the swing leg too close to the stance
one, resulting in possible collisions between the legs. In
our experiments, this was sometimes observed at speed
extrema and during perturbed walking. A first naive
solution would be to increase the weight of the fitness
stage favoring large lateral distances between both feet.
However, this might reduce the range of achievable
speeds. Another solution would be to increment the
lateral hip swing control. Yet, this depends on the
walker embodiment being used.

Muscles coordination during human locomotion is
a complex task due to the large redundancy in

the musculo-skeletal system (Ting et al., 2012). To
solve this over-actuation problem, human motion
control possibly relies on muscle synergies, i.e. on
the covariation of muscle activities. Synergies virtually
decrease the number of degrees of freedom (Aoi et al.,
2010). In our work, muscle synergies are captured by
two factors. First, the number of muscle groups (mainly
inspired from (Geyer and Herr, 2010)) is much smaller
than the actual number of human muscles. Second,
some synergies are generated by our reflexes and CPG
signals. For instance, the combined activation of the
HAM and GLU muscles in early stance stabilizes
the torso. Yet, other synergies could be explored, in
particular if more muscles were added to the musculo-
skeletal system.

The controller could also be tested on a model closer
to the human morphology than COMAN. For instance,
the human femoral joint is quite different from the
robot hip joints. Similarly, feet closer to the human
ones could by used on the robot. In (Colasanto et al.,
2015), replacing the rigid feet of COMAN by compliant
prostheses led to more robust gaits, when using similar
neuromuscular control rules.

Computer graphics animation is another avenue
for the development of such models, for example
through the generation of motion and torque patterns
incorporating biomechanical constraints (Wang et al.,
2012). Similar neuromuscular models are not limited to
humans but could possibly be extended to many biped
creatures, as demonstrated by (Geijtenbeek et al.,
2013) on an ostrich model.

7.5 Perspectives
A natural extension of the forward speed modulation
approach reported in this paper would be a module
governing steering actions, i.e. changes in the heading
direction. This would make possible to modulate both
the heading direction and the radius of curvature of the
biped walker trajectory, and thus to reach any point in
a 3D environment and to navigate around obstacles.

As detailed in Section 7.4, the controller is valuable
to better understand human locomotion and to
investigate possible pathologies. However, significant
differences with human data were reported. These
divergences could be more thoroughly investigated to
obtain gaits closer to human ones. This could be done
by refining the muscuoloskelettal model and the neural
controller rules, but also by using a model (instead of
a robot) close to the real human morphology (e.g. with
toes and some compliance in the segments).

Interestingly, the bio-inspired approach developed
here could also be applied to different body
types, and even to extinct species. For instance,
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computer simulations and biomechanical modeling are
considered as some of the most rigorous methods to
reverse-engineer the gait of dinosaurs. By combining
solid evidence like the morphology of their limb
skeletons with external and muscular forces, it
is thus possible to reconstruct physically plausible
motions (Hutchinson and Gatesy, 2006). Therefore,
neuromuscular controllers could possibly be adapted
to theropod (i.e. bipedal dinosaur, like Tyrannosaurus)
gaits.

All the tests performed in this contribution used
a faithful simulation model of the COMAN platform
(including its actuator dynamics and noisy torque
sensing). Therefore, the controller has the potential to
be tested on a real robotic device. Similarly to (Van der
Noot et al., 2015a), this transfer would require some
care regarding the dynamic non-idealities (e.g. impact,
friction and backlash).

There is an increasing interest to bring humanoid
robots out of the laboratories, as emphasized during
the recent DARPA Robotics Challenge. However,
biped locomotion remains an important challenge, as
illustrated during the terrain task of this contest.
Indeed, during the corresponding trials, only 2 of the
16 teams successfully completed the entire terrain
task without requiring an intervention, so that the
walking challenge for the finals had to be simplified
(Johnson et al., 2016). The present contribution does
not target DRC-like tasks, but rather studies the
scientific question of exploring the benefits of human-
like musculo-skeletal systems, together with their
control properties. This is scientifically interesting, but
also potentially valuable for robotics locomotion since
humans are still much better than humanoid robots to
tackle complex terrains. Moreover, the leg stretching
obtained using our approach would potentially offer to
cross larger obstacles and to climb stairs with higher
steps, in comparison to walkers displaying continuous
knee bending.

While bipedal robots are currently far from the
walking capabilities of real humans in terms of
robustness and energy-efficiency, this contribution
thus shows that neuromuscular controllers hold the
potential to make a step towards this achievement.
Indeed, the generated gaits are closer to the human
ones, and so, more adapted to our surroundings. In
the future, robots might be able to adapt to our
environment, rather than us having to adapt our
environment to the robot limited skills.

Appendix A Index to multimedia
Extensions

The multimedia extensions are detailed in Table 2.

Table 2. Multimedia Extensions.
Extension Media

type
Description

1 Video COMAN tracks a modulated
reference speed.

2 Video COMAN walks blindly while
impacted by flying balls.

3 Video COMAN walks blindly on a stair
(ascending, then descending).

4 Video COMAN walks blindly on an
ascending slope.

5 Video COMAN walks blindly on an
irregular ground.

6 Code Code repository.

Appendix B Muscle tendon unit
The full muscle model and its biological relevance is
covered in (Geyer et al., 2003) and (Geyer and Herr,
2010). We report here the steps and equations to
implement it.

B.1 MTU kinematics
First, some parameters can be computed from the joint
angular positions ϕ, through the lever arm rm and the
MTU length lmtu.
Each lever arm rm obeys an equation like rm =

±r0 cos(ϕ− ϕmax). It is thus maximal (and equal to
±r0) when ϕ is equal to ϕmax, except for lever arms
acting the hip joint which is kept constant (i.e.
rm = ±r0). The sign depends on the resulting torque
contribution in the frames of Figure 2.

The MTU length is computed as lmtu = lopt + lslack +∑
i
∆ lmtu,i, where lopt is the CE optimum length, lslack

is the distance corresponding to SE being slack and
i is the joint affected by the muscle (two joints for
GAS and HAM, one otherwise). For the hip: ∆ lmtu =
± ρ r0(ϕ− ϕref ), where ρ accounts for muscle pennation
angles and ϕref is the angle at which lmtu = lopt + lslack.
The sign can be deduced from the muscle length
evolution with ϕ (e.g. positive when lmtu increases
with ϕ). For the other joints: ∆ lmtu = ± ρ r0 (sin(ϕ−
ϕmax)− sin(ϕref − ϕmax)).

All parameters used in these equations are reported
in Table 3. All the angle frames are consistent with
the ones displayed in Figure 2 and equal zero in the
homing position, i.e. the walker standing straight with
the arms hanging vertically.
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Table 3. The fixed MTU parameters of the 27 types of muscles for COMAN are reported in this table. When a leg MTU acts
on different joints, they are explicitly reported as (a) for ankle, (k) for knee and (h) for hip. The sign ± means positive for the
right leg and negative for the left one. The sign ∓ means the opposite. These values were extracted from (Geyer and Herr,
2010) for the leg sagittal muscles and from (Song and Geyer, 2013) for the hip lateral muscles. Finally, other muscles were
estimated with the OpenSim simulator (Delp et al., 2007) with the human models developed in (Arnold et al., 2010) and in
(Rajagopal et al., 2016). The masses mmtu were obtained using the method proposed in (Wang et al., 2012), while the λ
values were obtained from (Yamaguchi et al., 1990). These values are scaled to the size of COMAN by using dynamic scaling
methods, being described in (Bejan and Marden, 2006) and (Schepelmann et al., 2012).

Fmax vmax lopt lslack ro ϕmax ϕref ρ [-] mmtu λ [%]
[N] [lopt/s] [mm] [mm] [mm] [deg] [deg] [g]

SOL 1415 9 17 110 21 20 -10 0.5 240 81
TA 285 18 26 100 17 -10 20 0.7 70 70

GAS 530 18 21 170 21 (a) 20 (a) -10 (a) 0.7 110 5421 (k) 40 (k) 15 (k)
VAS 2125 18 34 98 26 15 55 0.7 720 50

HAM 1060 18 43 132 21 (k) 0 (k) 0 (k) 0.7 450 4434 (h) - (h) -25 (h)
GLU 530 18 47 56 43 - -30 0.5 250 50
HFL 710 18 47 43 43 - 0 0.5 330 50

HAB 1060 18 38 30 26 - ∓10 0.7 404 50
HAD 1595 18 43 77 13 - ∓15 1 676 57
EVE 375 18 21 107 13 ∓10 ∓5 0.7 80 57
INV 480 18 21 128 9 ±5 ∓10 0.7 100 55

HER 530 18 24 21 17 - ±10 0.8 180 50
HIR 570 18 34 30 13 - ∓20 0.7 192 50

BTR 640 18 43 43 49 45 0 1 270 50
BTL 640 18 43 43 49 -45 0 1 270 50
BET 1060 18 51 13 23 -45 0 1 540 57
BFL 830 18 48 53 35 40 5 1 390 50
BRR 560 18 47 45 15 -35 20 1 260 51
BRL 560 18 47 45 15 35 -20 1 260 51

SET 180 18 59 38 18 -70 -120 0.6 110 42
SFL 525 18 43 42 14 -30 -15 0.7 230 57
SAB 810 18 44 43 16 ∓80 ∓60 0.7 350 57
SAD 140 18 59 56 21 ∓20 ∓155 0.6 80 42
SER 430 18 32 13 12 ∓35 0 0.7 140 45
SIR 650 18 39 22 12 ∓40 ∓25 0.7 250 58
EET 460 18 53 51 10 -25 -60 0.8 240 32
EFL 390 18 50 72 16 -70 -60 1 190 46

B.2 MTU forces

The following equations depend on the muscle state,
which can be represented by a single variable: the
CE length lce (the other variables can be computed
from the kinematics and from lce). In the approach of
(Geyer and Herr, 2010), lce is found by integrating its
time derivative vce. However, this integration requires
a small time step, due to the stiff and strongly non-
linear derivative state equations, which is a strong issue

for a robot controller sampled with a fixed time step
(Van der Noot et al., 2014). A possible solution is
to integrate these dynamic equations with a smaller
time step than the one of the controller itself. For
example, the controller of COMAN being sampled with
a frequency of 1 kHz, the following equations were
integrated with an explicit Euler integration scheme
sampled five times in a row with a time step of 0.2ms.
First, the muscle force Fm = Fse, i.e. the force in

the series elastic element SE, is computed from the

Prepared using sagej.cls



Van der Noot et al. 25

current value of lse (= lmtu − lce): Fse = Fmax([(lse −
lslack)/(lslack εref )]+)2, where Fmax is the muscle
maximal force and εref (= 0.04) is the reference strain
(with [•]+ = max(0, •)). Then, the BE force is computed
as follows: Fbe = Fmax([lmin − lce]+/(lopt εbe))2 where
lmin (= 0.44 lopt) is the BE rest length and εbe (= 0.28)
is the BE reference compression. F ∗pe is the PE muscle
force divided by fv (the force-velocity relationship)
and is obtained as follows: F ∗pe = Fpe/fv = Fmax([lce −
lopt]+/(lopt εpe))2, where εpe (= 0.56) is the PE reference
strain.
Then, the force-length relationship is computed as

fl = exp(c||(lce − lopt)/w||3), where w (= 0.56 lopt) is the
width and c (= ln(0.05)) is the residual force factor.
fl is finally saturated to a lower bound of 10−3.
The force-velocity relationship is computed as follows:
fv = (Fse + Fbe)/(Am Fmax fl + F ∗pe), and then saturated
between 0 and 1.5. Am is the muscle activation, being
computed using the following first-order low-pass filter:
τm dAm/dt = Sm −Am, where τm is a time constant of
10 ms and Sm is the muscle stimulation (see Figure 1).
Finally, this allows to compute the force of the CE
element as Fce = [Fse + Fbe − F ∗pe fv]+.

At the end, the CE velocity vce is obtained as
vce = −vmax lopt ((1− fv)/(1 +K fv)) if fv < 1 and
vce = −vmax lopt ((fv − 1)/(7.56K (fv −N) + 1−N))
otherwise. In these equations, K (= 5) is the shape
factor of fv and N (= 1.5) is the eccentric force
enhancement. All constant parameters used in these
equations are reported in Table 3.
Iterating over all these equations, the value of lce is

progressively updated by integrating vce. Finally, the
generated torque reference is computed as τref = rm Fm
(see Figure 1).
To prevent the joints from exceeding a physiological

range, similar joint soft limits as the ones reported in
(Geyer and Herr, 2010) are used. Note that these limits
do usually not engage, expect for the knee joint in over-
extension.

B.3 Metabolic energy
The model of (Bhargava et al., 2004) is used to
compute the virtual muscle metabolic energy. This
requires two additional MTU properties: its mass
(mmtu) and the mass fraction of slow twitch fibres (λ),
which can be found in Table 3.
The total rate of energy consumption is computed

as ĖMTU = ȦMTU + ṀMTU + ṠMTU + ḂMTU + ẆMTU .
The different terms are detailed below.
The activation heat rate is computed as a function

of the stimulation Sm: ȦMTU = mmtu (40λ sin(π2 Sm) +
133 (1− λ)(1− cos(π2 Sm))). The maintenance heat
rate ṀMTU depends on the activation Am and

requires to define the function g(l̃ce) to model
the dependence on the normalized muscle length
l̃ce = lce/lopt. The function g(l̃ce) is set to 0.5
for l̃ce < 0.5, to l̃ce for 0.5 ≤ l̃ce < 1, to −2 l̃ce +
3 for 1 ≤ l̃ce < 1.5 and to 0 otherwise. Then, we
compute ṀMTU = mmtu g(l̃ce) (74λ sin(π2 Am) + 111 (1−
λ) (1− cos(π2 Am))).

The shortening heat rate ṠMTU is set to
[−0.25Fm vce]+, the basal metabolic rate ḂMTU is
set to 0.0225mmtu and the work rate ẆMTU is set to
[−Fce vce]+. Finally, ĖMTU is simply integrated with
time.

Appendix C CPG full equations
The following equations report the time derivatives of
the neurons firing rate. Most parameters are optimized,
their range being provided in Table 4.

ẋ1 = 1
τ

(−x1 − βav1 − ηa[x2]+ − ηf [x3]+ − ηg[x4]+ + u1)

ẋ2 = 1
τ

(−x2 − βav2 − ηa[x1]+ − ηg[x3]+ − ηf [x4]+ + u2)

ẋ3 = 1
τ

(−x3 − βbv3 − ηf [x1]+ − ηg[x2]+ − ηb[x4]+ + u3)

ẋ4 = 1
τ

(−x4 − βbv4 − ηg[x1]+ − ηf [x2]+ − ηb[x3]+ + u4)

ẋA = 1
τ

(−xA − βavA − ηf [x3]+ − ηg[x4]+ − ηa[xB ]+ + uA)

ẋB = 1
τ

(−xB − βavB − ηg[x3]+ − ηf [x4]+ − ηa[xA]+ + uB)

ẋC = 1
τ

(−xC − βcvC − ηh[x3]+ − ηi[x4]+ − ηc[xD]+ + uC)

ẋD = 1
τ

(−xD − βcvD − ηi[x3]+ − ηh[x4]+ − ηc[xC ]+ + uD)

ẋE = 1
τ

(−xE − βdvE − ηj [x3]+ − ηk[x4]+ − ηd[xF ]+ + uE)

ẋF = 1
τ

(−xF − βdvF − ηk[x3]+ − ηj [x4]+ − ηd[xE ]+ + uF )

ẋG = 1
τ

(−xG − βevG − ηl[x1]+ − ηm[x2]+ − ηe[xH ]+ + uG)

ẋH = 1
τ

(−xH − βevH − ηm[x1]+ − ηl[x2]+ − ηe[xG]+ + uH)

The fatigue dynamic equations are as below:

v̇1 = 1
γaτ

(−v1 + [x1]+) v̇C = 1
γcτ

(−vC + [xC ]+)

v̇2 = 1
γaτ

(−v2 + [x2]+) v̇D = 1
γcτ

(−vD + [xD]+)

v̇3 = 1
γbτ

(−v3 + [x3]+) v̇E = 1
γdτ

(−vE + [xE ]+)

v̇4 = 1
γbτ

(−v4 + [x4]+) v̇F = 1
γdτ

(−vF + [xF ]+)

v̇A = 1
γaτ

(−vA + [xA]+) v̇G = 1
γeτ

(−vG + [xG]+)

v̇B = 1
γaτ

(−vB + [xB ]+) v̇H = 1
γeτ

(−vH + [xH ]+)
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Appendix D Excitations modulation
Modulations of the CPG excitations ui are mainly
performed to achieve the synchronization between
neurons and foot strikes. In particular, x1 is expected to
fire (i.e. to become positive) just after the right strike
and x2 after the left strike. Therefore, all excitations ui
are set to zero if x1 is positive during the right swing
phase or x2 is positive during the left swing phase.
On top of that, xA and xE are expected to fire after

the right strike, while xB and xF should fire after the
left strike. Also, neurons firing rates are allowed to
be positive only during their corresponding supporting
phase (i.e. stance phase without last double support).
Finally, some neurons are inhibited to prevent the PD
control acting on the sagittal torso angle θt (tracking
θref ) to start earlier than expected (and similarly
for the lateral torso angle Ψt tracking Ψref ). This is
achieved with the following equations:

u1 = u− [x1]+SL + [x1]−Str,R uC = u− [xC ]+SL
u2 = u− [x2]+SR + [x2]−Str,L uD = u− [xD]+SR
u3 = u− [x3]+SL − [x3]+Str,L uG = u− [xG]+SL
u4 = u− [x4]+SR − [x4]+Str,R uH = u− [xH ]+SR
uA = u− [xA]+SL + [xA]−Str,R − [xA]+[θref − θt]+1/0
uB = u− [xB ]+SR + [xB ]−Str,L − [xB ]+[θref − θt]+1/0
uE = u− [xE ]+SL + [xE ]−Str,R − [xE ]+[Ψref −Ψt]−1/0
uF = u− [xF ]+SR + [xF ]−Str,L − [xF ]+[Ψref −Ψt]+1/0

where u = 1 is a tonic excitation. The function [x]SR
is equal to x during the right leg supporting phase, to
0 otherwise. The function [x]SL is equal to x during the
left leg supporting phase, to 0 otherwise. The [x]Str,R
function is always equal to zero, except if the firing
rate x1 is still negative after the right foot strike.
In this case, it is equal to x as long as x1 is not
the only positive RG neuron. The function [•]Str,L
is similar for the left leg and x2. These functions
are combined with the previously defined [•]+ and
[•]− functions. The [•]+1/0 function returns 1 if its
argument is positive, 0 otherwise (similarly for [•]−1/0
with negative arguments). Finally, only the positive
values of all excitations ui are used (i.e. [ui]+).
It should be noted that most of the time, these

excitations are kept to the tonic excitation u. Indeed,
their modulations are usually very short.
Finally, to guarantee that the CPG quickly converges

to its requested state, different excitations are used
during the first 0.2 s of the gait. More specifically, all
ui are set to 0, except u2, uB, uD and uF (if the right
leg is the first to enter in swing phase) or u1, uA, uC
and uE (otherwise), which are set to 1.

Appendix E Muscles stimulations
The following sections detail the muscle stimulations
implementation. As in (Geyer and Herr, 2010), time
delays were applied to some reflex inputs, to capture
long (tl), medium (tm) and short (ts) neural signal
delays. Stimulations are further bounded between
SMIN = 0.01 and SMAX = 1. All parameters to be
optimized are reported in Table 4.

E.1 Leg proximal muscles
The leg proximal muscles (i.e. HFL, GLU, HAM, HAB
and HAD) are the main ones in charge of adapting the
gait speed.

Based on the CPG firing rates xi, the CPG output
signals yi are computed. Similarly to (Van der Noot
et al., 2015b), we use yi = [ [xa]+ − [xb]+ ]+, where xa is
a PF neuron and xb a RG neuron directly connected
to xa. The [xb]+ contribution purpose is to decrease
the output strength when xa and xb are firing at the
same time. However, its influence is rather small, i.e.
yi ' [xa]+:

y1 = [ [xA]+ − [x3]+ ]+ y5 = [ [xE ]+ − [x3]+ ]+

y2 = [ [xB ]+ − [x4]+ ]+ y6 = [ [xF ]+ − [x4]+ ]+

y3 = [ [xC ]+ − [x3]+ ]+ y7 = [ [xG]+ − [x1]+ ]+

y4 = [ [xD]+ − [x4]+ ]+ y8 = [ [xH ]+ − [x2]+ ]+

The muscles stimulations of the proximal muscles
(CPG contribution) are computed as follows:

SGLU,R = kGLU,1 y1 + kGLU,2 y8

SGLU,L = kGLU,1 y2 + kGLU,2 y7

SHAM,R = kHAM,1 y1 + kHAM,2 y2 + kHAM,3 y8

SHAM,L = kHAM,1 y2 + kHAM,2 y1 + kHAM,3 y7

SHFL,R = kHFL y4 ; SHAB,R = kHAB y5

SHFL,L = kHFL y3 ; SHAB,L = kHAB y6

The following equations are systematically doubled:
one for the right leg, and the other for the left leg. To
capture this, we used the {x, y} notation: the first item
refers to the right leg, and the second to the left one.
In particular, {R,L} stands for right or left leg. During
the stance phase, the PD control applied to the torso
sagittal lean angle is computed as follows: ∆θ,{R,L} =
(kp,θ (θref − θt(ts))− kd,θ θ̇t(ts)) F̃gd,{R,L}(ts), where kp,θ,
kd,θ and θref are parameters to be optimized. θt is the
torso sagittal lean angle and θ̇t is its derivative. Finally,
F̃gd,{R,L} is the vertical force below the corresponding
foot, normalized to the walker weight. Then, the
HFL stimulation is incremented by [∆θ,{R,L}]+. The
[∆θ,{R,L}]− signal is added to the GLU stimulation, as
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long as the condition [y1 = 0 & y4 = 0] is met for the
right leg or the condition [y2 = 0 & y3 = 0] is met for
the left leg (to prevent contradictory signals between
the CPG and reflexes).

In the following notations, δ equals 1 for the
right leg and −1 for the left one. For HAB and
HAD muscles, additional reflexes are added. The PD
control applied during the supporting phase on the
lateral lean angle is computed as follows: ∆Ψ,{R,L} =
(kp,Ψ (δΨref −Ψt(ts))− kd,Ψ Ψ̇t(ts)) F̃gd,{R,L}(ts), where
kp,Ψ, kd,Ψ and Ψref are parameters to be optimized. Ψt

is the torso lateral lean angle and Ψ̇t is its derivative.
Then, the stimulation SHAD is computed as SMIN +
[∆Ψ,{R,L}]{−/+}. The [∆Ψ,{R,L}]{+/−} signal is added to
the HAB stimulation, provided the condition [y5 = 0] is
fulfilled for the right leg or that [y6 = 0] is met for the
left one.

During the contralateral leg supporting phase,
the lateral hip reference position is computed
as ϕh,l,ref,{R,L} = −kp,Λ,h (−δΛref,h −∆com,{L,R}(ts)) +
kd,Λ,h ∆̇com,{L,R}(ts) where kp,Λ,h, kd,Λ,h and Λref,h
are control parameters to be optimized. ∆com,L is
the COM lateral position, relative to the left foot,
∆̇com,L its derivative. In order to decrease leg inter-
penetration, ϕh,l,ref,R is limited to an upper bound of
7.5◦ and ϕh,l,ref,L to a lower bound of −7.5◦. Then,
the PD controller tracking this hip lateral position
is computed as ∆h,sw,{R,L} = kp,ϕ,h (ϕh,l,ref,{R,L} −
ϕh,l,{R,L}(ts))− kd,ϕ,h ϕ̇h,l,{R,L}(ts), where kp,ϕ,h and
kd,ϕ,h are parameters to be optimized. ϕh,l,{R,L}
is the hip lateral position and ϕ̇h,l,{R,L} is its
derivative. HAB and HAD stimulations are then
computed as SHAB,{R,L} = SMIN + [∆h,sw,{R,L}]{−/+}

and SHAD,{R,L} = SMIN + [∆h,sw,{R,L}]{+/−}.

To support gait initialization, special stimulations
are sent to the HAB and HAD muscles. More
specifically, during an initial time Tsw,in, the first leg
to enter in the swing phase receives a stimulation
Ssw,in for the HAB muscle, while the HAD muscle
only receives the minimal stimulation SMIN . Similarly,
during an initial time Tst,in, the other leg (first in
stance) receives a stimulation Sst,in for the HAB muscle
and SMIN for the HAD muscle. These parameters are
reported in Table 4.

Finally, the leg transverse muscles (i.e. HER and
HIR) are actuated by the following PD controller:
∆trans,{R,L} = −500ϕh,t,{R,L}(ts)− 20 ϕ̇h,t,{R,L}(ts),
where ϕh,t,{R,L} is the hip joint transverse
position and ϕ̇h,t,{R,L} is its derivative. The
corresponding stimulations are the following:
SHER,{R,L} = SMIN + [∆trans,{R,L}]{−,+} and
SHIR,{R,L} = SMIN + [∆trans,{R,L}]{+,−}.

E.2 Leg distal muscles
In the sagittal plane, the leg distal muscles (i.e. VAS,
GAS, TA and SOL) are mainly based on reflexes, as
detailed in (Geyer and Herr, 2010). The following
rules hold during stance phase: SV AS = SMIN +
GV AS F̃V AS(tm); SGAS = SMIN +GGAS F̃GAS(tl); STA =
SMIN +GTA,st (l̃ce,TA(tl)− lTA,st)−GSOL,TA F̃SOL(tl);
SSOL = SMIN +GSOL F̃SOL(tl). The parameters GV AS,
GGAS, GTA,st, GSOL,TA, GSOL and lTA,st are optimized.
F̃m is the muscle force normalized by its maximal force
Fmax and l̃m is the muscle CE length lCE normalized
by its lopt value. On top of this, the VAS muscle
is inhibited (i.e. SV AS = SMIN) when close to knee
over-extension, i.e. when [ϕk(tm) < ϕk,th & ϕ̇k(tm) < 0],
where ϕk is the knee position and ϕ̇k is its derivative.
This inhibition is also applied during the double
support phase, detected by the CPG firing rate
condition [x2 > 0.05] (for the right leg) and [x1 > 0.05]
(for the left leg). During the swing phase, all leg distal
sagittal muscles only receive SMIN , except the TA,
which gets an extra term to guarantee a proper foot
clearance: STA = SMIN +GTA,sw (l̃ce,TA(tl)− lTA,sw),
where GTA,sw and lTA,sw are optimized.

During the supporting phase, the leg foot lateral
muscles are activated by a PD controller on the
COM lateral position, i.e. ∆f,sp,{R,L} = kp,Λ,f (δΛref,f −
∆com,{R,L}(ts))− kd,Λ,f ∆̇com,{R,L}(ts). kp,Λ,f , kd,Λ,f and
Λref,f are optimized parameters. Corresponding
stimulations (i.e. acting on EVE and INV) are
the following: SEV E,{R,L} = SMIN + [∆f,sp,{R,L}]{−/+}

and SINV,{R,L} = SMIN + [∆f,sp,{R,L}]{+/−}. During the
other leg supporting phase, a PD controller on the
foot lateral orientation is applied as ∆f,sw,{R,L} =
−kp,Ψ,f Ψf,{R,L}(tl)− kd,Ψ,f Ψ̇f,{R,L}(tl), where kp,Ψ,f
and kd,Ψ,f are optimized, Ψf,{R,L} is the foot lateral
orientation (relative to the ground) and Ψ̇f,{R,L} is
its derivative. The corresponding stimulations are the
following: SEV E,{R,L} = SMIN + [∆f,sw,{R,L}]{−,+} and
SINV,{R,L} = SMIN + [∆f,sw,{R,L}]{+,−}.

E.3 Upper-body muscles
Most torso muscles track a constant position reference
qref using the following PD control rule: fPD,t(qref ) =
500 (qref − q)− 20 q̇, where q is the joint position, and
q̇ is its derivative. Then, the torso muscles BET,
BFL, BTL, BTR corresponding stimulations are the
following: SBET = [fPD,t(0◦)]−, SBFL = [fPD,t(0◦)]+,
SBTL = [fPD,t(0◦)]− and SBTR = [fPD,t(0◦)]+. For the
remaining torso muscles (i.e. BRL and BRR), the RG
neurons are used to control the torso transverse joint:
SBRL = ktorso [x1]+ + ktorso [x3]+; SBRR = ktorso [x2]+ +
ktorso [x4]+, where ktorso is a unique parameter to be
optimized.
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Table 4. The parameters to be optimized in the controller, and their ranges are reported in this table. The speed dependent
parameters are computed as follows: τ = Kτ + Lτ v∗ +Mτ v2

∗; kHAB = KHAB + LHAB v∗ +MHAB v
2
∗;

kHFL = KHFL + LHFL v∗; kGLU,1 = KGLU,1 + LGLU,1 v∗; kHAM,1 = KHAM,1 + LHAM,1 v∗;
kHAM,2 = KHAM,2 + LHAM,2 v∗ +MHAM,2 v

2
∗; kHAM,3 = KHAM,3 + LHAM,3 v∗; θref = Kθ + Lθ v∗;

Λref,h = KΛ,h + LΛ,h v∗ +MΛ,h v
2
∗, where v∗ = vref − 0.65 and vref is the target forward speed. When only a single speed was

optimized, all the terms related to v∗ and v2
∗ were removed. On top of that, the remaining speed parameters (i.e. labelled as

K•) received a higher range, close to the bounds of the vertical axes of Figure 7. The parameters optimized for the reference
controller are provided in Extension 6.

min max min max min max min max min max
β ηe 4 6.5 KHAM,1 2 3 MΛ,h 0 0.3 kd,Λ,h 0.1 0.4
βa 5 6.5 ηf 2 4 KHAM,2 0.4 1 reflex (s) kp,ϕ,h 3.5 5.5
βb 3 4.5 ηg 3 4.5 KHAM,3 0 0.1 GSOL 0.85 1.05 kd,ϕ,h 0.2 0.5
βc 2.5 5 ηh 3.5 5 Kθ 0.18 0.25 GSOL,TA 0.3 1 kp,Ψ,f 12 18
βd 4 6.5 ηi 3.5 5 KΛ,h 0.04 0.09 GTA,sw 1.5 4 kd,Ψ,f 0.5 1
βe 3 4.5 ηj 3.5 4.5 Lτ -0.04 -0.01 GTA,st 1.5 2.5 kp,Λ,f 70 120
γ ηk 3.5 5 LHAB -1 0.4 GGAS 0.2 0.8 kd,Λ,f 10 20
γa 2 4 ηl 2.5 3.5 LHFL 2.5 4 GV AS 25 35 Λref,f 0.03 0.06
γb 2 3.5 ηm 3 4 LGLU,1 0.2 1.5 lTA,sw 0.8 0.9 init
γc 2.5 5.5 const LHAM,1 3 7 lTA,st 0.55 0.65 Tst,in 0.1 0.4
γd 1 2 kGLU,2 0 0.15 LHAM,2 -1.3 -0.3 ϕk,th 0 0.3 Tsw,in 0 0.3
γe 2.5 4 Ψ, ref 0.03 0.05 LHAM,3 -0.35 -0.2 kp,θ 4 10 Sst,in 0.6 1
η speed Lθ 0.2 0.35 kd,θ 0.2 0.8 Ssw,in 0 0.5
ηa 3.5 6 Kτ 0.078 0.085 LΛ,h -0.04 0.06 reflex (l) Xinit 0.03 0.07
ηb 4.5 7 KHAB 1.4 2.2 Mτ -0.08 0 kp,Ψ 10 15 Yinit 0 0.03
ηc 3.5 5.5 KHFL 3.5 6 MHAB -1.5 0 kd,Ψ 1.5 2.5 upper
ηd 5.5 7 KGLU,1 2.5 3.5 MHAM,2 1 3 kp,Λ,h 1 2.5 ktorso 0.07 0.11

Similarly, most arms muscles track a position
reference qref with the following control:
fP,a(qref ) = 5 (qref − q). Then, the resulting SAB,
SAD, SER, SIR, EET and EFL stimulations are the
following: SSAB,{R,L} = [fP,a(−δ 5◦)]{−,+}, SSAD,{R,L} =
[fP,a(−δ 5◦)]{+,−}, SSER,{R,L} = [fP,a(δ 7.5◦)]{−,+},
SSIR,{R,L} = [fP,a(δ 7.5◦)]{+,−}, SEET = [fP,a(−25◦)]+

and SEFL = [fP,a(−25◦)]−. Finally, the RG neurons
are used to control the arms remaining muscles SFL
and SET: SSFL,{R,L} = karms [x{1,2}]+ + karms [x{3,4}]+;
SSET,{R,L} = karms [x{2,1}]+ + karms [x{4,3}]+, where
karms is set to an arbitrary value of 0.75.

Appendix F External forces
Two types of custom-made contact models were used:
(i) the mesh-based one (used for GCM) and (ii) the
volume penetration one.

F.1 Mesh-based contact
The mesh-based CGM is very similar to the one
implemented in (Geyer and Herr, 2010) and (Song
and Geyer, 2013). More specifically, a regular mesh
of 20 points is used under each foot. This number
was selected as a compromise between computational
cost and the accuracy of contacts with uneven grounds
(see Experiment 9). Each foot point can reach three
different states: (i) swing state (when it is not in

contact with the ground), (ii) sliding state and (iii)
stiction state.

Swing state is reached when the point is above the
ground level. In such a case, no force is applied to it.
When the point penetrates the ground, it first switches
to the sliding state. Then, when the point tangential
velocity gets lower than 1 cm/s, the point switches to
the stiction state. In this state, if the tangential force
norm ||FT || exceeds µst ||FN || (µst = 0.9 is the static
friction coefficient, FN is the point normal force), the
point goes back to the sliding state.

When in sliding or stiction state, the normal force
norm is computed as ||FN || = −kp,N ∆N [1− kd,N ∆̇N ]+

where kp,N is set to 81.5 kN/m and kd,N is set to 30 s/m.
∆N is the point penetration in the ground along its
normal (negative according to the frames of Figure 2),
∆̇N is its time derivative.
During stiction, the vectorial tangential force

is computed as FT = −kp,T ∆T [1 + kd,T sgn(∆T ) vT ]+,
where kp,T is set to 8.2 [kN/m], and kd,T to 30 [s/m].
The sgn(•) function returns 1 when its argument is
positive, and −1 otherwise. The vector ∆T contains
the two tangential components of the distance between
the point current position and the previous one when
entering in stiction mode. Finally, vT is the point
tangential velocity.

During the sliding phase, the tangential force is
computed as FT = −µsl FN (vT /||vT ||), where µsl = 0.8
is the sliding friction coefficient.
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F.2 Volume penetration contact
This contact model is only used in Extension 2 to
compute the contacts between the COMAN body and
the balls thrown to it. The robot body is approximated
by two types of volume primitives: spheres and
cuboids. Then, iterating through the different volume
primitives (COMAN bodies and balls), different
volume penetrations Vi (i.e. intersection volume
between two different bodies) and their time derivative
V̇i are computed.

For each Vi 6= 0, a normal repulsive force is
computed as ||FN,i|| = lp,N Vi [1 + ld,N V̇i]+, where
lp,N is set to 109 [N/(m3)] and ld,N is set to
103 [s/(m3)]. The tangential force is computed as
FT,i = −µ ||FN,i|| tanh(βT ||vT,i||) (vT,i/||vT,i||), where
µ = 0.9, βT = 10 [s/m], tanh is the hyperbolic tangent
function and vT,i is the relative tangential speed
between the two bodies. Finally, these forces are
applied (with opposite directions) at the center of the
contact surface between the two bodies.

Appendix G Lack of fit
The sum of squares due to lack of fit (Smith and Rose,
1995) analysis is presented here for one of the eleven
key parameters displayed in Figure 7.
First, the polynomial approximation of orders

0, 1 and 2 are computed, based on the least
squares method. For the n (= 10) target speeds, the
corresponding sum of squares due to lack of fit is
computed as SSLF =

∑n

i=1 ni(Ȳi − Ŷi)
2, where ni (=

10) is the number of trials performed for each speed,
Ȳi is the mean of these ni trials and Ŷi is the
regression performed for this speed. Similarly, the sum
of squares due to pure error is computed as SSPE =∑n

i=1

∑ni

j=1(Yij − Ȳi)2, where Yij is the jth measure
performed for the target speed i.

Next, the corresponding F-distribution can be
computed as F = (SSLF/(n− p))/(SSPE/(N − n)),
where p is the number of parameters of the regression
(1, 2 or 3, respectively for orders 0, 1 and 2) and N
(= n · ni) is the total number of measures.

Using the null hypothesis that the regression model
is adequate, the corresponding p-value are computed
based on this F-distribution value and on the following
degrees of freedom: n− p and N − n.
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