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Abstract— Controllers based on neuromuscular models
hold the promise of energy-efficient and human-like walkers.
However, most of them rely on optimizations or cumbersome
hand-tuning to find controller parameters which, in turn, are
usually working for a specific gait or forward speed only.
Consequently, designing neuromuscular controllers for a large
variety of gaits is usually challenging and highly sensitive.
In this contribution, we propose a neuromuscular controller
combining reflexes and a central pattern generator able to
generate gaits across a large range of speeds, within a single
optimization. Applying this controller to the model of COMAN,
a 95 cm tall humanoid robot, we were able to get energy-efficient
gaits ranging from 0.4 m/s to 0.9 m/s. This covers normal human
walking speeds once scaled to the robot height. In the proposed
controller, the robot speed could be continuously commanded
within this range by changing three high-level parameters as
linear functions of the target speed. This allowed large speed
transitions with no additional tuning. By combining reflexes
and a central pattern generator, this approach can also predict
when the next strike will occur and modulate the step length
to step over a hole.

I. INTRODUCTION

Dynamic walking gaits with a robot can be achieved using
many approaches. Among them, those relying on the zero-
moment point (ZMP), an indicator of dynamic stability [1],
are likely the most famous ones. Using this framework,
humanoid robots like ASIMO [2] or HRP-2 [3] perform
robust gaits. However, controllers based on these approaches
usually present some limitations like energy-inefficiency,
high computational cost and non human-like features like
continuous knee bending [4]-[5].

In parallel, some models consider the human gait as a
limit cycle and focus on global stability. This leads to the
concept of limit cycle walking [6]. Among these, the neuro-
musculoskeletal model developed by Geyer and Herr [7]
relies on reflex-based controlled muscles generating torques
at the joint level. Interestingly, this approach can generate
robust and energy-efficient gaits similar to the human ones
in terms of muscles activities, joint angles and torques.

The reflex rules developed in [7] require an optimization
phase (or manual tuning) of the many open parameters
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governing the contribution of each local reflex. This approach
makes the optimized parameters set working for a single
gait speed. When the robot is walking, it is thus not easy to
change its speed or its stride length.

A first strategy to overcome this limitation was developed
by Song and Geyer [8]. It consists in optimizing different
gaits and then modulating some key control parameters to
change the forward speed during the walking gait. However,
this approach can only cope with small speed changes after
a first optimization. High speed variations require then run-
ning extra optimizations to find new parameter modulations
between pre-optimized walking gaits.

Another approach developed by Dzeladini et al. [9] in-
troduces a central pattern generator (CPG), a neural circuit
capable of producing rhythmic neural activity patterns with-
out receiving rhythmic inputs [10]. The CPG is used as a
feed-back predictor of the reflex rules from [7]. This CPG
can thus be used as a feed-forward component, reducing the
complexity in the speed control strategy of [8]. Nevertheless,
this approach requires to capture (with third order spline
interpolations) the reflex rules outputs that were optimized
for one precise walking speed with no feed-forward con-
tribution. Consequently, the gait is not optimal (regarding
energy-efficiency) for the whole range of speeds. On top of
that, this leads to a speed transition range being smaller than
the one from [8].

In this contribution, we also propose a controller mixing
reflexes and a CPG to control the leg muscles. Our CPG
is designed as a six-neurons network of Matsuoka oscilla-
tors [11]-[12] sending feed-forward signals to the proximal
muscles controlling the hip. These bio-inspired artificial
oscillators, capturing the mutual inhibition between half-
centers located in the spinal chord, are widely used to model
the firing rate of mutually inhibiting neurons, in both the
upper and the lower extremities [13].

The controller can then be optimized for a large range of
walking speeds, co-optimizing reflexes and CPG parameters
at the same time within a single optimization. We applied
this approach to a simulation of the COMAN, a humanoid
robot presented in section II. Then, in section III, we detail
the controller itself and the associated optimization process,
while section IV presents the strategy used to adapt the
robot speed during the walking gait. Section V analyses the
resulting gaits, comparing them to the ones obtained with the
original model of [7]. Results about speed transitions, strike
prediction and holes stepping techniques are also presented.
Finally, we conclude the paper in section VI.



II. COMAN PLATFORM

We use a simulation model of the 95 cm tall COmpliant
HuMANoid platform (COMAN). This robot, developed by
the Italian Institute of Technology (IIT), has 23 actuated
degrees of freedom (DOFs), most of them being equipped
with series elastic actuators [14]. Each joint is equipped
with position, velocity and torque sensors. The robot also
features an inertial measurement unit (IMU) and 6-DOF feet
force and torque sensors measuring ground reactions. Our
controller only uses sensory inputs available on this robot.
Further information can be found in [15] and [16].

The COMAN (visible in Fig. 1b) is modelled in a
simulation environment called Robotran [17]. Its actuators
implementation is described in [15]. In this contribution, we
artificially constrain the waist to stay in the world sagittal
plane to study 2D walking gaits only.

III. CONTROLLER DESIGN

The purpose of our controller is to produce position or
torque references for each of the 23 DOFs of the robot. We
briefly describe the control rules for the main of them before
focussing on the three sagittal joints of each leg.

A. Joints control

The COMAN has eleven DOFs for the upper body:
three in the torso and four per arm. All torso joints are
controlled to track zero position. For arms control, we use
similar rules as the ones presented in [18]. In short, constant
position references are tracked for the elbow sagittal DOF
(0.25 rad), the shoulder lateral DOF (0.09 rad) and the
shoulder transverse DOF (0.14 rad). Finally, the shoulder
sagittal DOF φ s

s tracks a linear function of the hip angles
difference as φ s

s = 0.3 ∗ (θ R
h − θ L

h )− 0.3 where θ R
h and θ L

h
are the right and left sagittal hip positions (θ R

h and θ l
h are

inverted for the left shoulder), all expressed in radians. Such
control leads to balancing arm trajectories reducing the total
energy consumption during the walking gait [18].

Regarding the lower body, each leg has three sagittal
DOFs, two lateral DOFs and one transverse DOF. All leg
non-sagittal joints track zero position, to comply with the
2D walking. Finally, the three sagittal joints, being the main
focus of this contribution, rely on the neuromuscular model
controller described in sections III-B to III-E. The initial
posture of the robot constraints all joints to track zero
position which corresponds to an upright posture, except
the sagittal ankle tracking a position κ to be optimized (see
Table I).

B. Musculoskeletal model

We focus here on the leg sagittal DOFs which are the most
important joints propelling the body forward. The model
proposed by Geyer and Herr [7] actuates each leg with seven
Hill-type muscles, capturing the contribution of the main
muscle groups of the human leg. For our COMAN model,
these virtual muscles are depicted in red in Fig. 1b, producing
torque references in a way similar to [7]. The key idea is the
following: muscles react by contracting and apply forces on
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Fig. 1: The six-neurons oscillators network sends stimulations to the
proximal muscles, while the distal ones are only driven by reflexes. The
hip flexor muscles (HFL) are stimulated by both the CPG and the reflexes.

the body. Therefore, the equivalent torques applied by the
seven muscles on the leg sagittal joints are computed from
the segments free-body diagrams. These torque references
are sent to a PI controller feeding the actuators (implemented
like in [15]). Their state computation is fully described in [7]
and [19]. The main muscle properties are scaled to fit the size
and the weight of the COMAN, using dynamic scaling [20].

Each muscle is then controlled by its activation A(t),
capturing the neural signal provided by motoneurons. This
signal is related to a neural input S(t), the muscle stimulation,
using a first-order low-pass filter capturing the excitation-
contraction coupling [19]. Controlling the muscle model thus
reduces to designing control rules for the stimulations S(t)
driving the seven muscle groups of each leg.

C. Central pattern generator design

Central pattern generators (CPGs) are neural circuits capa-
ble of producing rhythmic patterns of neural activity without
receiving rhythmic inputs [10]. They present attractive prop-
erties like distributed control, redundancies handling, and
locomotion modulation using simple control signals [10].
While locomotor CPGs have been identified in many ver-
tebrates, their recruitment for human locomotion is still a
matter open to discussion [21]. Yet, computational models
show that CPGs could play a major role in human loco-
motion. For instance, Taga et al. [22] demonstrated bipedal
locomotion ability to adapt to a changing environment using
CPG modulations. The work of Paul et al. [23] proposed a
neuro-musculo-skeletal model studying the effects of spinal
cord injury on locomotor abilities, again with a CPG as
central element.

In this contribution, a CPG structure is used to send
descending feed-forward signals to proximal muscles, i.e.
muscles driving the hip joint. This is coherent with the
proximo-distal gradient hypothesis postulating that CPGs
mostly drive the proximal muscles while the distal ones
should be driven by reflexes [9]. Indeed, distal muscles are



more impacted by external perturbations like ground interac-
tions [24]. The three proximal muscle groups controlled by
the CPG are the hip flexors (HFL), the gluteus muscle group
(GLU) and the biarticular hamstring muscle group (HAM),
presented in Fig. 1b.

The firing rate xi of each neuron Ni is computed according
to Eq. (1) where vi is the self-inhibition modulated by an
adaptation constant β j, ui the external excitation and τ is a
time constant. The connexion strengths ηk tune the mutual
inhibitions. The [•]+ function takes the positive part of its
argument (it saturates to zero when the argument is negative)
and thus captures the fact that the activation of a given neuron
decreases when another is active (mutual inhibition). Fig. 1a
depicts the Matsuoka network with six neurons Ni that is
used to drive these virtual muscles, along with the parameters
β j, ui and ηk.

ẋi =
1
τ
(−xi −β j vi −

3

∑
1

ηk [xl ]
++ui) (1)

The self-inhibition computation is captured by Eq. (2)
where γ j is a constant multiplying τ . The index i corresponds
to the neuron index, while the indexes k and l in Eq. (1) are
replaced according to Fig. 1a. Index j equals A for neurons
N1 and N4, B for N2 and N5 and C for N3 and N6. These
rules are fully developed in Appendix A.

v̇i =
1

γ j τ
(−vi +[xi]

+) (2)

This network obeys a mirror symmetry due to the symme-
try of the right and left leg. This symmetry between neurons
N1, N2, N3 and neurons N4, N5, N6 can be observed in the
mutual inhibition connexions strength ηk in Fig. 1a and also
in the full equations development provided in Appendix A.

Neurons N1, N2, N4 and N5 form a fully-connected net-
work where each neuron fires alternatively over the cycle.
These neurons will stimulate the HAM and GLU muscles of
each leg. Neurons N3 and N6 receive inputs from them but
do not interfere on this first fully-connected network. In this
way, their respective own parameters β j, γ j and ηk provide
more flexibility to stimulate the HFL muscles.

Similarly to [23], this CPG can also be modulated by
the interactions between the robot body and its environment.
This is done via short excitations modulations at foot strike.
The input excitations ui of the neurons first consist in a tonic
excitation equal to u. For simplicity, this tonic contribution
is kept equal to 1. Modulations of the oscillators output will
rather be governed by external gains (see Eq. (5)). Some
terms are further added to the excitation component in order
to achieve synchronization between the oscillators and the
walking gait. In particular, the firing rate x1 is expected to
switch from a negative to a positive value at the moment of
right foot strike. Similarly, x4 is expected to become positive
at left foot strike.

This results in Eq. (3). The function [•]− takes the absolute
value of its argument if it is negative, and saturates to
zero otherwise. On top of that, the function [•]SR keeps its

argument intact during the right leg supporting phase, while
saturating it to zero otherwise (similar for the left leg with
[•]SL). Then, [•]Str,R always saturates its argument to zero,
except after the right foot strike if the firing rate x1 is still
negative. In this case, it keeps its argument intact as long
as x1 is negative (similar for [•]Str,L with the left leg and
x4). Finally, the excitation ui of all neurons is forced to zero
when x1 becomes positive before right strike or when x4
becomes positive before left strike, again in order to achieve
the desired synchronization.

u1 = u− [x1]
+
SL +[x1]

−
Str,R u4 = u− [x4]

+
SR +[x4]

−
Str,L

u2 = u− [x2]
+
SL − [x2]

+
Str,L u5 = u− [x5]

+
SR − [x5]

+
Str,R

u3 = u− [x3]
+
SL u6 = u− [x6]

+
SR

(3)

The terms −[•]+SR/SL are used to make each neuron firing
rate synchronizing with the appropriate leg. In steady-state,
this term is thus always zero. The terms ±[•]∓Str,R/L are used
when the oscillators are too slow. Then, a burst is provided
to the late neurons while others are partially inhibited. On
the contrary, if the oscillators are faster than requested,
all excitations are forced to zero so that all firing rates
will slowly converge to zero. Again, in steady-state, the
contribution of these synchronization terms is very limited.
These mechanisms achieve the synchronization between the
different neurons. Interestingly, these synchronization mech-
anisms make the oscillators able to predict when the next
strike will happen. Some associated results are presented in
section V-D. Walk initiation is simply achieved by sending an
excitation of 1 to two neurons (N1, N3 or N4, N6) while the
other excitations are set to zero. After 0.2 s, all excitations
are activated, as previously explained.

Finally, the oscillators produce four outputs yi, taken as
the difference between the positive part of the firing rates
xi of two adjacent neurons, see Eq. (4). This arrangement
is designed to feed the appropriate signals to the different
muscles during the different walk phases (e.g. high stimu-
lations to the HFL muscles during early swing to flex the
corresponding hip), see Eq. (5).

y1 = [x1]
+− [x2]

+ y3 = [x4]
+− [x5]

+

y2 = [x3]
+− [x2]

+ y4 = [x6]
+− [x5]

+
(4)

D. Muscle stimulations

Muscles stimulations are computed as combinations of
CPG output signals yi, reflex rules and prestimulations S0.
This combination is presented in Fig. 1b. The stimulations
are all bounded between 0.01 and 1. All the reflex rules
are adapted from [7]. However, using oscillators to feed the
proximal muscles allows to drastically reduce the number of
reflex rules.

The stimulations of the three proximal muscle groups
HFL, GLU and HAM, respectively SHFL,R/L, SGLU,R/L and
SHAM,R/L for the right/left leg are linear combinations of the
CPG output signals yi positive part, see Eq. (5). kHFL, kGLU ,
kHAM,1 and kHAM,2 are four gains presented in Appendix C.



SHFL,R = kHFL [y4]+ SHFL,L = kHFL [y2]+

SGLU,R = kGLU [y1]+ SGLU,L = kGLU [y3]+

SHAM,R = kHAM,1 [y1]+ + kHAM,2 [y3]+

SHAM,L = kHAM,1 [y3]+ + kHAM,2 [y1]+

(5)

On top of that, the HFL muscles receive an extra stimu-
lation Sext

HFL coming from [7] to help maintaining the trunk
to a desired reference position θre f (in radians):

Sext
HFL = ξ1

Fz

w
(θre f −θt −ξ2 θ̇t) (6)

where θre f , ξ1 and ξ2 are three parameters to be optimized,
θt is the trunk absolute angle, θ̇t its derivative, w the whole
robot weight and Fz the vertical force under the foot of the
corresponding leg. This extra stimulation is a reflex similar
to a PD controller stabilizing an inverted pendulum.

Two muscle groups only receive a constant prestimula-
tion S0: the gastrocnemius (GAS) and the tibialis anterior
(TA). S0 is put to 0.01 (the minimal stimulation). Finally,
the vasti muscles (VAS) and the soleus muscles (SOL)
receive only the prestimulation during swing, while receiving
positive force feed-back reflexes during stance [7]:

SVAS = S0,VAS + GVAS (FVAS/FVAS,max)

SSOL = S0 + GSOL (FSOL/FSOL,max)
(7)

where GVAS and GSOL are two parameters to be optimized,
FVAS/FVAS,max and FSOL/FSOL,max are the normalized forces
produced by these two muscles and S0,VAS is the prestimula-
tion of the VAS muscle, which is optimized and can exceed
0.01. Finally, SVAS is set to S0,VAS when the corresponding
leg is the trailing leg during the double support phase or if
the corresponding knee ankle φk exceeds an over-extension
threshold φo f f (to be optimized) while φ̇k is positive (see [7]).
This prevents knee over-extension.

E. Optimization of the gait controller

We use a particle swarm optimization (PSO) algorithm
to optimize the open parameters [25]. These parameters are
listed in Appendix B, Table I, along with their bounds. All
optimization runs simulate a 60 s walking gait. To encourage
solutions with enough foot clearance with the ground, obsta-
cles are added below the swing foot during optimization.
These bumps are trapezoidal shapes placed next to the foot
in contact with the ground. Their height linearly increases
with the simulation time from 0 cm to 3 cm. The objective
function used to evaluate each set of parameters is staged
in the sense that different objectives are sorted by order of
relevance, such that the next objective is taken into account
only when the previous one is fulfilled.

The first stage requires the robot to walk without falling
during the 60 s simulation time, the fitness being proportional
to the walking time. When this objective is reached, the speed
is later optimized to match a target speed. The corresponding
objective function is given in Eq. (8), where f is the objective
function, x the parameter to be constrained (the speed here),
x∗ is the target parameter and α , β are two weight param-
eters. This output is then bounded between 0 and α . When

the robot speed is in a range of 0.05m/s around the target
speed, the last fitness stage is triggered. There, we minimize
the metabolic energy consumption in muscle contraction per
unit distance walked [26] and the oscillators prediction error,
summing their corresponding objective functions. Indeed, a
good oscillator phase prediction is potentially relevant to
develop other mechanisms requiring gait synchronization,
see section V-D. In both cases, we also use Eq. (8) where
x now represents the metabolic energy consumption per unit
distance walked or the time error between the oscillator strike
prediction and the actual one. In both cases, the target x∗ is
equal to zero, since the objective is to minimize both the
energy consumption and the prediction error.

f = α e−β (x−x∗)2
(8)

IV. SPEED ADAPTATION

In this section, the controller is further extended with the
objective to optimize several gaits (corresponding to a range
of different speeds) within a single optimization. This will
allow the modulation of speed when the robot is walking.
This speed modulation is mainly performed by adapting two
features of the CPG: frequency and amplitude. Indeed, faster
walking speeds usually correspond to faster walking frequen-
cies and longer step lengths [27]. Moreover, faster speeds
result in larger trunk tilt, as identified in [8]. Consequently,
the trunk angle reference θre f acting on the HFL muscles also
needs to be adapted as a function of the desired speed, θre f
increasing for faster gaits. The oscillators frequency is tuned
with the time constant τ , decreasing with higher speeds. To
modify the oscillators outputs amplitude, we adapt the gains
kHFL, kGLU , kHAM,1 and kHAM,2, using different adaptation
laws for each of them. Indeed, an increase in speed does
not necessary result in an uniform scaling of the muscles
stimulations. In this case, it is less trivial to predict how
these parameters will evolve with the robot speed.

The evolutions of these three types of parameters is studied
in section V-A. It appears that they can be approximated by
linear functions of the target speed, according to the rules
described in Appendix C, which are used to extend our con-
troller to speed adaptation. So, the strategy is the following.
The optimization process always targets an arbitrary speed of
0.6 m/s for initiation. After four steps, the speed parameters
are updated for a new target speed according to the rules
described in Appendix C. Each set of optimized parameters
is then tested for a large range of different speeds, and the
objective function is set as the average of each trial. In this
way, we co-optimize all parameters for the largest possible
range of speeds (from 0.4 m/s to 0.9 m/s).

V. RESULTS

The CPG-based controller presented in this paper is com-
pared with the reflex-based approach from [7]. To this end,
we first study the evolution of the parameters presented in
section IV. We also present the ability of our CPG-based
controller to track a speed reference, to predict when the
next strike will happen and to step over holes.
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Fig. 2: We run five optimizations for each target speed and we measure the actual speed of each solution, along with the optimized value of the six open
parameters. For each target speed, we gather the five optimization final results, presenting their mean and standard deviations. For graph legibility, the
errorbars represent half of the standard deviations. Dashed lines present the linear approximations for the range of speeds between 0.45 m/s and 0.85 m/s,
using the minimum mean square error method.

A. Speed parameters

Six parameters were identified in section IV to be adapted
as a function of the walking speed (θre f , τ , kGLU , kHFL,
kHAM,1 and kHAM,2). First, an optimization with an arbitrary
target speed of 0.6m/s is launched. Then, all the optimized
parameters are frozen, except the six parameters being left
for speed adaptation. New optimizations were then per-
formed, allowing only these six parameters to change across
the different target speeds. Our target speed experiments run
from 0.4 m/s to 0.9 m/s with a 0.05 m/s step. We run five
optimizations for each target speed and report the evolution
of the six parameters in Fig. 2.

Let’s first take a look at the speeds ranging from 0.45 m/s
to 0.85 m/s. There, the evolution of θre f and τ can be
captured by linear functions of the speed. On top of that, this
matches the expectations: θre f increases with speed while
τ decreases. Similar observations can be performed for the
amplitude gains: kGLU and kHAM,1 impact the stance phase
while kHFL and kHAM,2 impact the swing phase. During
stance phase, kGLU and kHAM,1 are both used to bring the
trunk back after foot strike. This requires higher stimulations
at high speeds where inertia effects and strike impacts are
more important. While this increase trend is clearly visible
for kHAM,1, it is less obvious for kGLU . On top of that, the
linear approximation slope is much higher for kHAM,1 than for
kGLU . This suggests that modulating kGLU is not necessary to
achieve gait modulation because its effect after foot strike is
largely dominated by the HAM muscles. Consequently, kGLU
is finally kept constant for all speeds, see Table I. During
the swing phase, hip flexion increases for higher speeds.
So, the HFL muscles get higher stimulations (with kHFL
increasing) while their antagonist muscles HAM get lower
stimulations (with kHAM,2 decreasing). Under 0.45 m/s, we
get a stagnation of θre f and τ and the evolution of the six
parameters of interest is less obvious. Over 0.85 m/s, the

optimizer did not manage to find appropriate and robust
solutions. However, co-optimizing all parameters according
to the strategy described in section IV (i.e. simultaneous
optimization of all parameters) could increase this range from
0.4 m/s to 0.9 m/s. These results support our linear speed
control rules presented in Eq. (11).

B. Gaits comparison

Three main controllers are compared in terms of energy
efficiency, trunk angle reference, stride period and stride
length. These three controllers are (i) the pure-reflex model
from [7], (ii) our CPG-based controller optimized for a
single fixed speed called fixed-CPG and (iii) our CPG-based
controller optimized to adapt the gait to a wide range of
speeds called adaptive-CPG. All of them were optimized
for target speeds ranging from 0.4 m/s to 0.9 m/s with a
step of 0.05 m/s. For each target speed, five independent
optimizations were performed. Contrary to the two first
controllers, the adaptive-CPG one was optimized in a single
optimization run for the whole range of speeds. These three
controllers resulted in human-like gaits for the whole range
of tested speeds with leg stretching and heel strikes.

All the results are presented in Fig. 3. Regarding energy
efficiency (Fig. 3a), the pure-reflex controller and the fixed-
CPG one perform in a similar way for speeds higher or
equal to 0.5 m/, with the fixed-CPG one being slightly more
efficient. However, for speeds under 0.5 m/s, the pure-reflex
controller is clearly more efficient. The main reason is that
the objective function of the fixed-CPG also targets a good
strike prediction, a constraint that is not taken into account
in the pure-reflex optimizations. Finally, the adaptive−CPG
model is the less energy-efficient. However, given that this
model is optimized for a wide range of speeds in a single shot
and not tuned for a precise gait, the small increase regarding
energy-efficiency seems a reasonable price to pay.
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Fig. 3: We run five optimizations for each target speed with different controllers. For each set of five optimizations, the mean and the standard deviation
are depicted. For graph legibility, errorbars correspond to the half of the standard deviation.

Fig. 4: COMAN is walking with its target speed increasing from 0.4 m/s to 0.9 m/s before going back to 0.4 m/s. Snapshots of the gait are taken during
each double support phase to show the stride length evolution.

In terms of stride analysis (Fig. 3c and 3d), the fixed-CPG
and the adaptive-CPG controllers have similar stride periods
and lengths. The pure-reflex model, however, features lower
stride periods and lengths, so favouring smaller steps with a
faster frequency. Finally, another difference in gait analysis
being visible in Fig. 3b is that the pure-reflex model also
favours larger trunk tilt θre f .

C. Target speed tracking

We now focus only on the adaptive-CPG controllers where
a wide range of speeds is optimized in a single optimization.
Fig. 4 presents snapshots of the COMAN walking with its
target speed increasing from 0.4 m/s to 0.9 m/s. After a few
steps, it gets backs its initial speed of 0.4 m/s. Fig. 5 shows a
gait where we modulate the robot speed. The target speed is
modified in the range from 0.4 m/s to 0.9 m/s with constant
accelerations of ±0.25m/s2. We measure the speed and post-
process it with a 0.5 s running average, visible in green
in Fig. 5. We observe that the robot is able to accelerate
from 0.4 m/s to 0.9 m/s in less than 2.3 s (acceleration

of 0.22m/s2), so corresponding to less than two strides. In
comparison, [8] requires four strides for similar accelerations
while [9] targets a range of speeds nearly two times smaller
once scaled to the robot height. Finally, decelerating from
0.9 m/s to 0.4 m/s is also performed in 2.3 s. Higher target
accelerations do not result in higher real accelerations and
might make the robot fall. During this experiment, the leg
sagittal torques never exceed 30 Nm, except for the hip at
high speeds (just after strike). However, these short torque
peaks (less than 10% of the stride period in the worst
case) never exceed the COMAN maximum hip torque of
55 Nm [16]. The reference torque signals are thus within the
robot actuators capabilities. This experiment is provided as
multimedia attachment.

D. Stride period prediction

The oscillators network is synchronized with feet strike
using short excitation modulations (see Eq. (3)) when the
oscillators prediction is too slow or too fast. During the op-
timization process, the objective function rewards solutions
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Fig. 5: The controller can track a speed reference (blue). The robot speed
computed in post-process is presented in green.

minimizing these synchronization mechanisms duration, thus
when the CPG correctly predicts the step period. So, these
oscillators can be used to predict when the next strike will
take place. This is potentially relevant to develop other
mechanisms requiring synchronization with the walking gait.
In Fig. 6, the robot walks at different speeds from 0.4 m/s to
0.9 m/s. For each speed, we get the stride period predicted
with the oscillators structure. Then, we compare this pre-
diction with the actual stride period. The global prediction
is rather accurate. Some small differences still appear with
slowest speeds: the predicted stride period is slightly higher
than the actual one, revealing that the oscillators are too
slow. This prediction is also presented in the multimedia
attachment.
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Fig. 6: The stride period predicted by the CPG is compared to the
actual one for different speeds expressed in m/s (green). The dashed line
corresponds to correct predictions.

E. Stepping over a hole

Since our speed modulation algorithm directly impacts
the step length, it features another nice and potentially very
useful property. Indeed, it can be used to temporarily alter the
gait and avoid landing the foot on an undesired place like a
hole. An example is provided in the multimedia attachment
where a short-time speed target increase can alter the gait
to perform a smaller step (likely due to the predominant
frequency increase effects during the first step) followed by
a longer one to cross a hole. Once this is done, the COMAN
recovers its previous gait. Some snapshots of this example
are provided in Fig. 7.

VI. CONCLUSION

In this contribution, we presented a bio-inspired controller
able to make a humanoid robot walk over a wide range of
speeds, allowing fast speed variations during the walking
gait. This speed modulation was achieved using simple rules
where all parameters to adapt were expressed as linear

Fig. 7: COMAN gait is adapted to cross a hole before going back to its
previous gait (snapshots taken during each double support phase).

functions of the target speed. Moreover, this controller,
combining reflexes and a CPG in a neuromuscular model,
could be tuned in one single optimization. Consequently,
reflexes and CPG parameters were co-optimized to achieve
a good energy-efficiency over the whole range of speeds.
On top of that, the CPG could be used to predict the stride
period and to modulate the gait to avoid landing the foot on
unwanted locations like holes.

While the main focus of this contribution is to provide
efficient walking algorithms for robots with human-like gait
features, it might also help to get a better insight on human
locomotion, where the existence of CPGs is still a matter
open to debate. Our controller relies on Hill-type muscle
models controlled by reflexes and Matsuoka oscillators, both
being developed on a solid biological background. In this
contribution, we demonstrated that simple modulations of
the CPG frequency and amplitude, together with a trunk
reference angle adaptation, could lead to large gait speeds
variations and step modulation. So, like Taga [22] or Paul
[23] contributions, this paper also argues that CPGs could
play a major role in human locomotion, at least to modulate
the gait.

However, there is still room for improvement with this
controller. In particular, results are deteriorated for slow
speeds in terms of energy efficiency, strike prediction and
gait modulation, which is worth being investigated. Natural
extensions of this controller would be to achieve 3D walking
gaits, or complex obstacles avoidance. Finally, we plan to
implement this controller on the real COMAN to validate
our controller on real hardware.

APPENDIX A

The equations governing the firing rate xi of each neuron
Ni are presented in Eq. (9), self-inhibition equations in Eq. (10).

ẋ1 =
1
τ
(−x1 −βA v1 −ηA[x4]

+−ηD[x2]
+−ηE [x5]

++u1)

ẋ2 =
1
τ
(−x2 −βB v2 −ηB[x5]

+−ηD[x1]
+−ηE [x4]

++u2)

ẋ3 =
1
τ
(−x3 −βC v3 −ηC[x6]

+−ηF [x2]
+−ηG[x5]

++u3)

ẋ4 =
1
τ
(−x4 −βA v4 −ηA[x1]

+−ηD[x5]
+−ηE [x2]

++u4)

ẋ5 =
1
τ
(−x5 −βB v5 −ηB[x2]

+−ηD[x4]
+−ηE [x1]

++u5)

ẋ6 =
1
τ
(−x6 −βC v6 −ηC[x3]

+−ηF [x5]
+−ηG[x2]

++u6)

(9)
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(10)

APPENDIX B

Table I gathers all the optimization parameters along with
their bounds. Some of these parameters are used to get the
trunk angle reference θre f , the oscillator time constants τ ,
and the stimulations gains kHFL, kHAM,1 and kHAM,2, accord-
ing to the rules described in Appendix C.

TABLE I: Optimization parameters and their bounds

min max min max min max
speed init β

Pθ 0.01 0.3 κ 0 0.13 βA 4.5 6.5
Pτ 0.08 0.2 reflex βB 4 6
PHFL 2.2 4 S0,VAS 0.01 0.03 βC 3 6
PHAM,1 1.3 3.2 GSOL 0.7 1.6 η

PHAM,2 0.5 2 GVAS 0.6 20 ηA 3 6
pθ 0 1 φo f f 2.5 π ηB 4 7
pτ -0.2 0 ξ1 0.3 10 ηC 3 6
pHFL 0 4.5 ξ2 0.004 0.15 ηD 2.5 4
pHAM,1 0 4.5 γ ηE 2.5 5
pHAM,2 -4 0 γA 0.5 2.5 ηF 2.5 5
const γB 0.5 2.5 ηG 3 5.5
kGLU 0.8 2 γC 0.5 3

APPENDIX C

The trunk angle reference θre f , the oscillator time con-
stant τ , and the stimulations gains kHFL, kHAM,1 and kHAM,2
are computed as simple linear functions of the target speed
vt , according to Eq. (11). v∗ is an arbitrary reference speed
set to 0.6 m/s. Speed modulation is then simply obtained by
modifying the target speed vt . Finally, kGLU is kept constant
for all speeds (see Table I).

θre f = Pθ + pθ (vt − v∗)

τ = Pτ + pτ (vt − v∗)

kHFL = PHFL + pHFL (vt − v∗)

kHAM,1 = PHAM,1 + pHAM,1 (vt − v∗)

kHAM,2 = PHAM,2 + pHAM,2 (vt − v∗)

(11)
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