
Trajectory Planning of a Bio-inspired Walker
in 3D Cluttered Environments using Internal Models

Nicolas Van der Noot1,2, Auke Jan Ijspeert2 and Renaud Ronsse1

Abstract— Navigation of humanoids in cluttered environ-
ments is a complex task which requires sensorimotor coordina-
tion while maintaining the balance of the walker. Typically,
robots rely on greedy computation of slow, inefficient and
unnatural gaits. This contrasts with the relative ease and
efficiency characterizing motion planning and execution of
humans. In previous contributions, we developed a bio-inspired
torque-based controller recruiting virtual muscles driven by
reflexes and a central pattern generator. Speed control and
steering could be achieved by the modulation of the forward
speed and heading. This paper extends this controller to
automatically compute both of these inputs, in order to achieve
trajectory planning in 3D cluttered environments. To do so,
we first develop a method based on internal models, a concept
widespread in cognitive neuroscience. We then compare the
obtained gait to results generated with a more traditional
planning method based on potential fields. In particular, we
show that internal models result in more robust gaits by taking
the walker dynamics into account.

I. INTRODUCTION

Humanoid robots hold the promise of a wider spread of
robotics use in our everyday lives as their body is very
similar to the human one, and thus more adapted to move
in environments designed for humans [1]. However, their
locomotion in uncontrolled environments remains an issue,
as emphasized by the DARPA Robotics Challenge [2]. On
top of their poor robustness in cluttered environments, typical
humanoid gait controllers — such as those recruiting the
zero-moment point as an indicator of gait feasibility [3]
— are usually energetically inefficient and exhibit unnatural
gaits at slow speeds [4], [5].

In contrast, humans are capable of robust, efficient and
versatile locomotion in diverse and cluttered environments.
Aiming at capturing some of these typical human walking
features, the seminal work of Geyer and Herr reported the
development of a bipedal model actuated by a human-
like neuromuscular model recruiting reflex signals [6]. We
incremented this model with the inclusion of central pattern
generators [7] to obtain modulation capabilities, first in 2D
[8], and later in 3D environments [9]. Finally, we extended
it to control the robot speed and steering (direction and

This research was supported by the European Community’s Seventh
Framework Programme under Grant 611832 (WALK-MAN) and by the
Belgian F.R.S.-FNRS (Aspirant #16744574 awarded to NVdN).

1N. Van der Noot and R. Ronsse are with the Institute of Mechanics,
Materials and Civil Engineering; the Institute of Neuroscience; and ”Louvain
Bionics”, Université catholique de Louvain, B-1348 Louvain-la-Neuve,
Belgium. renaud.ronsse@uclouvain.be

2N. Van der Noot and A. J. Ijspeert are with the Biorobotics Laboratory,
Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-
1015 Lausanne, Switzerland. auke.ispeert@epfl.ch

curvature) by the modulation of two simple scalar inputs:
the forward speed and heading references [10].

Yet, the modulation of both of these inputs needed to be
performed by a human operator. In particular, moving in a
cluttered environment was not as straightforward as moving
over a flat ground because the curvature was intrinsically
limited and because it was not possible to plan the exact foot
placement. In [11], we proposed an approach to modulate
the step height and length, but this required additional
optimizations and did not provide a direct way to deal with
obstacles. To address these shortcomings, this paper develops
a higher-level controller in charge of computing the forward
speed and heading references, in order to achieve trajectory
planning in cluttered environments.

The proposed approach recruits internal models of the
robot neuro-musculo-skeletal apparatus. Neural internal
models are circuitries that can learn the input/output re-
lationships of the motor apparatus [12]. In particular, the
cerebellum is thought to perform system identification by
building internal models that predict sensory outcome of
motor commands and correct motor commands through
internal feedback [13].

Systems modeling the causal relationship between actions
and their consequences are known as forward internal mod-
els. They anticipate the interplay between the body and the
world in order to overcome time delays associated with sen-
sory feedback control [14], [15]. Inverse internal models, on
the other hand, can compute feed-forward motor commands
from desired trajectory information [12]. They are therefore
well suited to act as controllers as they can provide the motor
command necessary to achieve some desired state transitions
[14]. In theory, a forward model of the motor apparatus
embedded in an internal feedback loop can approximate an
inverse model [12].

On top of embedding the robot with an internal model of
its neural system, we coupled it to a biomechanical model of
its body evolving in the locomotion environment. Therefore,
such a model can be casted as a digital twin of the robot.
Digital twins are digital replications of living as well as
non-living physical entities, enabling data to be seamlessly
transmitted between the physical and virtual worlds in order
to monitor, understand, and optimize the physical entity
behavior [16]. Here, these digital twins are used to anticipate
the consequences of a given set of commands to navigate in
cluttered environments, and therefore optimize these com-
mands for trajectory planning.

Finally, the trajectory and gait generated using internal
models will be compared to those obtained with a more

traditional localization and navigation technique, historically
developed for wheeled robots and ported to humanoids,
namely the potential fields [17].

This paper is organized as follows. In Section II, we
review the simulated robotic platform used in this research
and detail the controller main parameters. These parameters
are later obtained using internal models in Section III and
potential fields in Section IV. Section V then compares the
trajectories and gaits obtained using both of these methods.
Finally, Section VI concludes the paper.

II. MODEL OF STEERABLE BIPED

This paper uses the COMAN platform, a 95 cm tall
humanoid robot, as embodiment. As reported in [9] and
[10], we use the Robotran simulator to model the robot in
its environment. The robot’s 23 joints are torque-controlled;
these torque references come from virtual muscles, fed
by virtual reflexes and a central pattern generator. More
information about the robot and its model can be found in
the aforementioned papers and in [18].

Although all the developments of this contribution are
done in simulation, the final purpose is to port these algo-
rithms on a real platform. Therefore, we only use inputs
available to the actual robot (or which could be obtained
with realistic additions) and we introduce noise on the
torque readings, similarly to what would happen on the real
platform. In this paper, we chose to refer to the simulated
robot as the ”real robot” to distinguish it from its digital twins
(see Section III). Finally, we assume that the robot knows its
environment (obstacles positions...), a feature that could be
provided to the real platform by using a vision system.

In [9] and [10], we developed a bio-inspired controller
capable of generating human-like gaits with steering capa-
bilities. More precisely, two high-level inputs, namely the
speed (i.e. vref) and heading (i.e. href) references, could be
adapted on-line by an external operator, resulting in speed
and steering, i.e. path and curvature, adaptations.

Yet, the exact feet placement was difficult to predict. This
had a significant impact when the robot needed to avoid
small obstacles and/or holes along its path. Since the steering
curvature was limited, there was no straightforward method
for an external operator to adapt the commands to reach a
target, while avoiding obstacles.

In this contribution, we present two different methods to
automatically track a moving goal position, while avoiding
obstacles. The first method is based on the development of
internal models, while the second one recruits a potential
field navigation algorithm. In other words, this contribution
develops a higher layer to our pre-existing reference con-
troller (developed in [9] and [10]), in order to automatically
compute vref and href .

III. INTERNAL MODELS PREDICTION

In order to develop internal models capable of predicting
the future motion of the robot in cluttered environments, we
designed the following strategy. Seven digital twins of the

real robot simulated potential trajectories in its current envi-
ronment. These models were running in parallel four times
faster than the real robot to serve as predictors of potential
locomotion trajectories. Each model received different sets
of speed and heading command to test. After a short time,
the robot selected the command corresponding to the most
robust and efficient model. This process was repeated up
to the end of the task, i.e. when the robot reached its target
position. These internal models were therefore able to predict
the future step locations of the robot and to check if the
corresponding path was safe.

A. Internal models state

In order to generate internal models from the whole body
dynamics, a compact representation with low dimensionality
can generally be extracted, known as the state of the system.
This state contains all the relevant time-varying information
needed to predict or control the future of the system [15]. In
humans, the cerebellum is assumed to be involved in state
estimation through monitoring of efferent copies [19].

Here, we identified 172 state variables available to the
controller, which had to be provided to the internal models to
rebuild the current state of the real robot. On top of that, each
internal model received the current position (including the
absolute orientation) and speed of the real robot waist. This
represents 12 additional state variables, which are currently
not available with the real platform. Yet, they could later
be obtained on the real hardware by developing specific
localization hardware and software, or possibly by relying
on external measurement devices. Every second, a reset of
these internal models was performed in order to remain close
to the current state of the robot, and to incorporate its changes
in speed and heading command.

The 172 controller state variables are the following (the
number of floating parameters is indicated in bold; they are
all described in [9] and [10]):
• position and velocity of the 23 motors actuating the

robot’s degrees of freedom, i.e. before the series elastic
actuators (SEA), see [20] (46)

• position and velocity of the 23 corresponding joints, i.e.
after the SEA (46)

• time (1)
• state of each leg: swing or stance (2)
• supporting leg state (see [9]) (1)
• length of the contractile element of the 48 virtual

muscles actuating the robot’s joints (48)
• state of the oscillators being the building units of the

central pattern generator (24)
• state of both neurons providing turning commands (2)
• speed (vref) and heading (href) commands (2)
With the addition of the 12 kinematic variables of the

waist, there are thus 184 parameters to be sent to the
internal models in order to synchronize them with the current
state of the real robot. Importantly, the accelerations of the
joints, motors and of the waist position are not provided
(and therefore set to zero). While these measures could be
easily obtained in simulation, their accurate measurement on

the real robot is unrealistic. This fact combined with the
noise introduced in the torque sensory readings resulted in
small differences between the internal models predictions
and the future motion of the robot, as would happen with
real hardware.

In contrast to [10], all the steering adaptations (related to
the heading reference) were applied in the phase following
the last foot touch down of either leg. This was done in order
to obtain faster heading changes, at the cost of a reduced
lateral stability.

Also, synchronizations were never performed during the
double support phase. If a synchronization was triggered
during a double support phase, it was performed at the next
swing phase. The underlying reason is because the ground
contact model (GCM) is more sensitive to numerical issues
when both feet are in contact with the ground, due to the
state machine used for the GCM (see [9]).

B. Internal models to avoid obstacles

The first validation task required the robot to walk in a
3D simulation environment with obstacles and walls that
must be avoided. It is called ”Experiment 1” and is shown
in the first part of the multimedia attachment (video in-
ternal models.mp4). In the next figures, the real robot is
represented with a blue torso, while its internal models have
other colors for the torso. Therefore, the real robot is referred
to as the ”blue robot”. Fig. 1 displays the blue robot in its
environment, and the orange internal model predicting the
future motion of the blue robot.

Fig. 1. The COMAN robot (blue torso) must navigate in a cluttered
environment (red obstacles and walls). Internal models (like the one with
the orange torso) run four times faster than the COMAN robot in order to
forecast its future motion. The internal models walk in the same environment
as the blue robot, except for obstacles that are widened by 10 cm (semi-
transparent red shapes).

As detailed in Section III-A, the internal models do not
perfectly predict the future motion of the robot, due to noise
and to the lack of information about accelerations. In order to
compensate for these inaccuracies, the obstacles are widened
by an arbitrary safety margin of 10 cm (i.e. each edge is
inflated by 5 cm), see Fig. 1. This holds only for the internal
models and not for the ”real” robot.

The internal models are initially launched while the blue
robot is still in the upright position (see Fig. 1). After the four
initial steps of the blue robot (i.e. corresponding to steady

TABLE I
INTERNAL MODELS COMMANDS. HEADING REFERENCES: href = 0

CORRESPONDS TO STRAIGHT WALKING, href < 0 TO LEFT TURNING,
AND href > 0 TO RIGHT TURNING.

ID color vref [m/s] href [−]
1 red 0.65 0
2 green 0.5 0
3 purple 0.8 0
4 yellow 0.55 0.8
5 orange 0.55 -0.8
6 white 0.75 0.8
7 black 0.75 -0.8

state walking), the internal models are re-synchronized with
this blue robot, as detailed in Section III-A. Subsequently,
all synchronizations are performed every second.

Each internal model tests the impact of a given set of
vref and href commands on the robot path. The commands
received by each internal model are detailed in Table I. They
result in different paths and steps for the different models,
as illustrated in Fig. 2.

Fig. 2. The seven internal models receive different speed and heading
commands, resulting in different paths and steps.

One second after resetting their states, each internal model
is expected to have simulated four seconds and to evaluate
its performance. This evaluation is based on the simulated
walking time of the internal model before falling (this
time is considered as infinite if the model did not fall).
Subsequently, the blue robot gathers all these scores and
adapts its next commands according to the ones selected by
its most promising internal model (see Fig. 3). If the seven
internal models fell, the robot selects the internal model with
the longest walking time before falling. Otherwise, a model
is arbitrarily picked among the surviving ones.

Because the internal models require one second of real
time to evaluate their performance, they initially keep the
same commands as the blue robot when predicting the first
second of the blue robot future motion. Then, they linearly
adapt their commands to their target command. This linear
adaptation is performed in 0.5 second of predicted time. After
one second of real time (thus corresponding to four seconds
of predicted time), the blue robot linearly adapts its current
commands to the ones selected by its best internal model,
with a linear adaptation lasting 0.5 second (of real time).

Fig. 3. The blue robot adapts its commands according to the ones selected
by its most promising internal models. In this case, the orange and the black
models did not fall. The blue robot will thus select the commands of one
of these two models.

In sum, after re-synchronizing its seven internal models,
the blue robot keeps its previous commands during 1 second.
In the meantime, the internal models predict what will be
the state of the robot in the next 4 seconds, when using
seven different sets of commands. At the end of this process
(lasting 1 second of real time), the blue robot selects the
best commands evaluated by its internal models, and linearly
adapts its commands during 0.5 second. Subsequently, the
internal models are reset and synchronized with the blue
robot as soon as the blue robot is not in double support
phase, and this cycle is repeated up to the end of the task.

C. Target reaching in cluttered environments using internal
models

The strategy presented in Section III-B can be adapted to
incorporate a moving target (”Experiment 2”, shown in the
second part of the multimedia attachment). The position of
the target is controlled in real-time by an external operator.
In the experiment displayed in Fig. 4, the target (depicted by
the blue arrow) was controlled using a joystick. The robot
purpose was to adapt its commands to come close to the
target (called ”goal position”), while avoiding the obstacles.

Fig. 4. The goal position is controlled by the external operator and depicted
by the blue arrow. In this case, the black internal model is the most likely
to reach this target.

The strategy of Section III-B is kept intact, except for
the evaluation of the best commands. If all the internal
models fell at the end of the 4 seconds, the one walking
the longer time before falling is selected. However, if one

or more models survive by the end of these 4 seconds, the
following score S is computed among the surviving models:
S = kd ln(1 + ∆d) + kα ∆α, where kd and kα are two
constant respectively set to 1 and 2 (arbitrary values), ∆d is
the distance between the goal and the model final position
(i.e. at the end of the 4 seconds) and ∆α is the absolute
value of the angle between the robot final orientation, and the
oriented line from its final position to the goal, i.e. absolute
value of the angle error in the transverse plane. The model
with the lowest score S is selected.

This selection can be interpreted as following: ∆d and
∆α should be minimized in order to be more likely to reach
the final target. kd and kα are scaling factors. The operator
ln(1 + ∆d) is used to reduce the importance of a faraway
target, while keeping a positive value, even when ∆d = 0. In
the example of Fig. 4, the black robot has the lowest score
S value, and is therefore selected.

IV. POTENTIAL FIELD PLANNING
The second method to compute appropriate (vref , href) is

based on the well-known potential field navigation algorithm
[21]. This method is intensively used in mobile robotics be-
cause it achieves robust goal tracking and obstacle avoidance,
at a low computational cost. We directly report the solution
to handle both obstacles and a target to be reached (i.e.
corresponding to ”Experiment 2” and to Section III-C).

A known drawback of potential field path planning is that
it requires a lot of parameters hand tuning. Here, we thus
conducted several preliminary tests leading to the parameters
tuning reported below, that was identified as a good com-
promise between robustness and performance (here, target
tracking).

A. Potential fields computation

The purpose of this potential field module is to compute
a force F = (Fx, Fy) driving the robot from its current
position (xr, yr) (respectively along the X and Y axes) to
the goal position (xg, yg), while avoiding obstacles.

Two different contributions are summed:
• one attractive potential field related to the goal position
• N repulsive potential fields related to each obstacle
First, the attractive potential field is parabolic and com-

puted as Uatt = 0.5 katt (∆x2 +∆y2), where ∆x = xr−xg ,
∆y = yr − yg and the proportional gain katt is set to 2.

The resulting force along the X axis Fx,att is computed
as follows: −∂Uatt/∂xr = −katt (xr − xg), and a similar
equation is used for the one along the Y axis Fy,att.

The amplitude of the resulting force (i.e. ||F|| =√
F 2
x + F 2

y) is bounded to an upper limit of 10.
Then, the total repulsive potential field Urep is computed

as the sum of the repulsive fields Urep,i of each obstacle i
(i.e. Urep =

∑N
i Urep,i ; Frep =

∑N
i Frep,i). In the

following equations, ρi is the shortest distance between the
robot body and the obstacle i (in [m]), while ρ0 (set to 4 m)
is the distance of influence of each obstacle. The repulsive
potential of each obstacle i is only computed when the robot
lies within this distance of influence.

For 0 < ρi < ρ0, the repulsive potential field of obstacle i
is computed as Urep,i = 0.5 krep (1/ρi−1/ρ0)2, where krep
is the repulsive constant, set to 1.

The corresponding repulsive force along the X axis
Fx,rep,i is computed as follows: −∂Urep,i/∂xr = krep (1

ρi
−

1
ρ0

) δx
ρ3i

where δx is the distance from the robot position to the
closest obstacle point along the X axis. A similar equation
is used for the repulsive force along the Y axis Fy,rep,i.

All these potential fields and forces are summed. Finally,
the resulting total force amplitude is bounded to an upper
value of 100. An example of potential fields map is visible
in Fig. 5, corresponding to the obstacles visible in the second
part of the multimedia attachment (”Experiment 2”). Here,
the goal location is set to (xg, yg) = (8, 0) and the potential
fields are computed for all the points of the map. This is
only for the sake of visualization because only the potential
fields force at the robot’s position (i.e. (xr, yr)) needs to be
computed in this approach.

Fig. 5. Visualization of the potential field with the obstacles of ”Experiment
2” and a goal point set to (8, 0).The resulting potential field U is depicted
with colors corresponding to the ones of the color bar (with Uatt and each
Urep,i bounded to an upper limit of 2). The resulting forces are represented
by the black arrows.

B. Potential field walking commands

Section IV-A computed the resulting force F = (Fx, Fy)
at the robot position (xr, yr). Here, we use it to obtain
appropriate commands (vref , href) for the robot. In the
following equations, θF = atan2(Fy, Fx) is the orientation
of the force vector and θR is the robot’s orientation. Each
orientation is defined by its corresponding angle in the
transverse plane, bounded in the [−π;π] interval, and with a
value of 0 rad corresponding to an orientation aligned with
the positive X axis.

First, the angle ∆θ = θR− θF is computed and translated
in the [−π;π] interval. The heading reference href is then
computed as ∆θ

π/2 , in case −π/2 ≤ ∆θ ≤ π/2. Otherwise,
href is set to −1 if ∆θ < −π/2, while href is set to 1
if ∆θ > π/2. This makes the robot progressively aligning
its orientation towards the target point (with a correction
proportional to the orientation error).

The speed reference vref is set to vMIN + kv (vMAX −
vMIN), where vMIN and vMAX are respectively the min-
imal (0.4 m/s) and maximal values (0.9 m/s) of the speed
reference. kv is a variable gain bounded in the [0; 1] inter-
val and is computed as [||F||/10]max=1 [cos (∆θ)]+, where
[•]max=1 saturates its argument to 1 and [•]+ = max(0, •).
In this way, the robot moves faster when the force amplitude
||F|| is large and slows down for small values of ||F||. Small
values of ||F|| usually happen when the robot is close to
its target or when it is close to obstacles with force fields
opposite to the target direction. On top of that, the function
[cos (∆θ)]+ reduces the speed coefficient kv when the robot
is not properly aligned with the force field, thus decreasing
its speed to have more time in order to correct its trajectory.

Interestingly, this computation method allows the com-
mands (vref , href) to be continuously adapted (i.e. no com-
mands discontinuity), provided there is no discontinuity in
the goal and obstacles positions.

V. RESULTS

Results from Experiments 1 and 2 are reported in the
multimedia attachment (video internal models.mp4). Results
reported below are obtained while the robot is requested to
follow a moving goal, either in an empty or in a cluttered
environment.

A. Tracking of a time-varying trajectory

Here, the goal position is updated so that the robot needs
to switch between straight lines, and right and left turning
motions. We arbitrarily decided to describe the goal position
motion following the ∞ symbol, mathematically casted as a
lemniscate of Bernoulli.

The goal position is initially set to (xg,0, yg,0) = (5, 0).
After 5 s, this position is updated as follows. First, a scaled
time t′ is computed as 2π t−5

∆Tlem
− π/2, where t is the real

time (in s), and ∆Tlem is the period to have a full cycle
of the lemniscate. The time-varying goal position (xg, yg) is
then computed as follows:

xg = xg,0 +
Alem

√
2 cos (t′)

sin 2(t′) + 1

yg = yg,0 +
Alem

√
2 cos (t′) sin (t′)

sin 2(t′) + 1

(1)

where Alem is set to 10, and was arbitrarily selected to have
curves with steering radii being achievable by the robot (see
[10] for more details).

In Fig. 6, this scenario was tested in a flat and empty
environment (i.e. no obstacle, no hole). The target was
moving during 320 s using ∆Tlem = 100 s. The paths of
the robot were measured using both internal models and
potential fields. Fig. 6 shows that the method based on the
potential fields managed to stay closer to the reference path.
This is mainly due to the discretization of commands used
by the internal models approach (i.e. only 7 discrete sets of
commands being evaluated), while the potential fields feature
a continuous command modulation.

Fig. 6. The goal position is depicted with dashed lines and is updated as
detailed in Eq. (1), starting at (xg,0, yg,0) = (5, 0) and using ∆Tlem =
100 s. COMAN was initially located at (xr,0, yr,0) = (0, 0), pointing
towards the positive X axis. The robot path obtained with the internal
models and potential field method are respectively represented in blue and
red. The full experiment lasted 320 s, so that the target made a bit more
than three full cycles.

B. Robustness in cluttered environments

Here, we keep the same trajectory as the one described by
Eq. (1) and visible in Fig. 6. However, the environment is
cluttered with randomly placed obstacles or holes.

In a first scenario (i.e. ground with obstacles), each
obstacle is a box of 20 cm × 20 cm, aligned with the
X and Y axes, with a height of 10 cm, i.e. too high
to step over it. They are similar to the ones visible in
”Experiment 2” (see multimedia attachment) and in Fig. 5.
These obstacles are randomly placed (flat distribution) on
the area with the following boundaries: x bounded between
-15 m and 25 m; y bounded between -10 m and 10 m. This
represents a surface of 800m2. With nobs being the number
of obstacles, this represents an average obstacles density
of nobs/800 obstacles per square meter. Importantly, no
obstacle is placed in a radius of 1 m around the robot
starting position (see Fig. 6), and in a safety rectangle
of 4 m (along the X axis)× 2 m (along the Y axis) right in
front of the robot. This prevents the robot from starting from
an impossible configuration where no path could be found.

The second scenario (i.e. ground with holes) is similar to
the first one, except that all the obstacles are replaced by
holes of the same dimension, i.e. squares of 20 cm× 20 cm
with a depth of 10 cm.

These two scenarios are tested for the following number
of obstacles nobs: 0, 50, 100, 150, 200, 250, 300 and for
the following durations ∆Tlem: 90, 100, 110, 120, 130,
140 s. These durations respectively correspond to average
target speeds of 0.82, 0.74, 0.67, 0.62, 0.57, 0.53 m/s (i.e.
to speeds in the speed range capabilities of the robot). The
resulting robustness of the two methods (i.e. internal models
and potential fields) is evaluated as the average time the
robot walks in these environments while following the target,
before falling.

As illustrated in Fig. 7, the robustness of the first scenario
(i.e. ground with obstacles) is slightly better for the internal
models method, especially for nobs ≤ 50. However, this
difference is not significant. Regarding the second scenario
(i.e. ground with holes), the results are also globally better

for the internal models method, but the differences are more
significant, especially for ∆Tlem ≤ 110 s and so for average
target speeds larger than 0.67 m/s. In other words, internal
models prediction performs better for speeds around the
middle of the COMAN’s speed range, and faster.

VI. CONCLUSION

In this paper, we presented a method recruiting internal
models to predict the future steps of a bipedal robot and to
adapt its path in cluttered environments. We compared it to
a more traditional controller based on potential fields and
showed that both approaches have their respective pros and
cons.

Indeed, gaits generated with the internal models show an
increased robustness compared to the gaits obtained with the
potential field method. The internal models notably take the
full dynamics into account to predict the impact of obstacles
and holes. This is particularly relevant to cross holes without
considering them as impassable obstacles. Other advantages
include the small amount of parameters to tune (only the
synchronization period, the commands to evaluate and the
score) and the lack of local minimum problem, typical of
potential field methods.

In contrast, gaits obtained with the potential field approach
managed to stay closer to the reference path in unobstructed
flat terrains, with a much smaller computational cost as
compared to the internal models. Regarding this last point,
a future perspective of the current contribution could be
to simplify the internal models without modeling the full
body dynamics. In [22], a simple forward internal model,
recruiting a three-layer feed-forward neural network, was
used to predict the expected self-generated acceleration dur-
ing walking, in turn stabilizing walking on changing slopes.

Another perspective of this work would be to use more
than seven internal models, in order to test a larger set of
commands, and therefore a better motion granularity. The use
of internal models could also be tested on the real platform,
thanks to the transfer framework we developed in [23]. In this
contribution, we simulated the ”real robot” by using a similar
model as the ones used for the digital twins. Adapting it for
the real world would thus probably require the introduction
of a more accurate noise modeling in the internal models. On
a real platform, our framework could further be combined
with an online mechanism correcting the accuracy of the
dynamic model [24], in order to improve the internal model
predictability, and thus the quality of planning.

Finally, the internal models could potentially also be used
in a synchronous mode. In other words, an internal model
could run at the same speed as the real robot, in order to
detect perturbations. For instance, the difference between the
center of mass (COM) of the real robot and its internal model
could be monitored. Then, if a push was applied to the real
robot, this would cause the COM of the robot and its internal
model to diverge. This difference could then be used by a
controller like the one described in [25], in order to add
reflexes mitigating this perturbation.

90 100 110 120 130 140

∆Tlem (s)

300

250

200

150

100

50

0

n
o
b
s
(−

)

(a) obstacles, int. models

90 100 110 120 130 140

∆Tlem (s)

300

250

200

150

100

50

0

n
o
b
s
(−

)
(b) obstacles, pot. field

90 100 110 120 130 140

∆Tlem (s)

300

250

200

150

100

50

0

n
o
b
s
(−

)

(c) holes, int. models

90 100 110 120 130 140

∆Tlem (s)

300

250

200

150

100

50

0

n
o
b
s
(−

)

(d) holes, pot. field

0

15

30

45

60

75

90

105

120

135

150

Fig. 7. Measures of the walker’s robustness in the two scenarios described in Section V-B while following a moving goal position (see Section V-A).
For each set of number of obstacles nobs and track duration ∆Tlem, the walker has to walk while following the goal. Its performance is evaluated as
the period of time between the target initial motion (i.e. 5 s after the simulation initialization) and the moment the robot felt, limited to an upper bound of
150 s. This experiment is repeated ten times in a row, each time with new random obstacles placement. The color map represents the average performance
(i.e. the aforementioned period of time) over the ten runs. Panels (a) and (b) gather the results of the first scenario (i.e. ground with obstacles), while panels
(c) and (d) gather the results of the second scenario (i.e. ground with holes). Finally, panels (a) and (c) use the internal models method, while panels (b)
and (d) use the potential field method.

REFERENCES

[1] S. Schaal, “The New Robotics-towards human-centered machines.”
HFSP journal, vol. 1, no. 2, pp. 115–26, July 2007.

[2] M. Johnson, B. Shrewsbury, S. Bertrand, D. Calvert, T. Wu,
D. Duran, D. Stephen, N. Mertins, J. Carff, W. Rifenburgh, J. Smith,
C. Schmidt-Wetekam, D. Faconti, A. Graber-Tilton, N. Eyssette,
T. Meier, I. Kalkov, T. Craig, N. Payton, S. McCrory, G. Wiedebach,
B. Layton, P. Neuhaus, and J. Pratt, “Team IHMC’s Lessons Learned
from the DARPA Robotics Challenge: Finding Data in the Rubble,”
Journal of Field Robotics, Sept. 2016.

[3] M. Vukobratovic and B. Borovac, “Zero-Moment Point - Thirty
five years of its life,” International Journal of Humanoid Robotics,
vol. 01, no. 01, pp. 157–173, Mar. 2004.

[4] R. Kurazume, S. Tanaka, M. Yamashita, T. Hasegawa, and
K. Yoneda, “Straight legged walking of a biped robot,” in 2005
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2005, pp. 337–343.

[5] H. Dallali, “Modelling and dynamic stabilization of a compliant
humanoid robot, CoMan,” Ph.D. dissertation, University of
Manchester, 2011.

[6] H. Geyer and H. Herr, “A muscle-reflex model that encodes principles
of legged mechanics produces human walking dynamics and muscle
activities.” IEEE transactions on neural systems and rehabilitation
engineering : a publication of the IEEE Engineering in Medicine and
Biology Society, vol. 18, no. 3, pp. 263–73, June 2010.

[7] A. J. Ijspeert, “Central pattern generators for locomotion control in
animals and robots: A review,” Neural Networks, vol. 21, no. 4, pp.
642–653, 2008.

[8] N. Van der Noot, A. J. Ijspeert, and R. Ronsse, “Biped gait controller
for large speed variations, combining reflexes and a central pattern
generator in a neuromuscular model,” in 2015 IEEE International
Conference on Robotics and Automation (ICRA), Seattle, WA, May
2015, pp. 6267–6274.

[9] ——, “Bio-inspired controller achieving forward speed modulation
with a 3D bipedal walker,” The International Journal of Robotics
Research, vol. 37, no. 1, pp. 168–196, Jan. 2018.

[10] N. Van der Noot, A. J. Ijspeert, and R. Ronsse, “Neuromuscular
model achieving speed control and steering with a 3D bipedal
walker,” Autonomous Robots, vol. 43, no. 6, pp. 1537–1554, Aug.
2019.

[11] P. Greiner, N. Van der Noot, A. J. Ljspeert, and R. Ronsse, “Continu-
ous Modulation of Step Height and Length in Bipedal Walking, Com-
bining Reflexes and a Central Pattern Generator,” in 2018 7th IEEE
International Conference on Biomedical Robotics and Biomechatron-
ics (Biorob), Aug. 2018, pp. 342–349, iSSN: 2155-1774.

[12] M. Kawato, “Internal models for motor control and trajectory plan-
ning,” Current Opinion in Neurobiology, vol. 9, no. 6, pp. 718–727,
Dec. 1999.

[13] R. Shadmehr and J. W. Krakauer, “A computational neuroanatomy
for motor control,” Experimental Brain Research, vol. 185, no. 3, pp.
359–381, Mar. 2008.

[14] D. M. Wolpert, R. C. Miall, and M. Kawato, “Internal models in the
cerebellum,” Trends in Cognitive Sciences, vol. 2, no. 9, pp. 338–347,
Sept. 1998.

[15] D. M. Wolpert and Z. Ghahramani, “Computational principles of
movement neuroscience,” Nature Neuroscience, vol. 3, no. 11, pp.
1212–1217, Nov. 2000.

[16] A. El Saddik, “Digital Twins: The Convergence of Multimedia Tech-
nologies,” IEEE MultiMedia, vol. 25, no. 2, pp. 87–92, Apr. 2018.

[17] M. Ferro, A. Paolillo, A. Cherubini, and M. Vendittelli, “Omnidirec-
tional humanoid navigation in cluttered environments based on optical
flow information,” in 2016 IEEE-RAS 16th International Conference
on Humanoid Robots (Humanoids), Nov. 2016, pp. 75–80, iSSN:
2164-0580.

[18] A. A. Zobova, T. Habra, N. Van der Noot, H. Dallali, N. G.
Tsagarakis, P. Fisette, and R. Ronsse, “Multi-physics modelling of
a compliant humanoid robot,” Multibody System Dynamics, vol. 39,
no. 1-2, pp. 95–114, Jan. 2017.

[19] J.-J. Orban de Xivry and V. Ethier, “Neural Correlates of Internal
Models,” The Journal of Neuroscience, vol. 28, no. 32, pp.
7931–7932, Aug. 2008.

[20] M. Mosadeghzad, G. a. Medrano-Cerda, J. a. Saglia, N. G.
Tsagarakis, and D. G. Caldwell, “Comparison of various active
impedance control approaches, modeling, implementation, passivity,
stability and trade-offs,” in IEEE/ASME International Conference
on Advanced Intelligent Mechatronics, AIM. IEEE, July 2012, pp.
342–348.

[21] L. E. Kavraki and S. M. LaValle, “Motion Planning,” in Springer
Handbook of Robotics, B. Siciliano and O. Khatib, Eds. Berlin,
Heidelberg: Springer, 2008, pp. 109–131.

[22] J. Schröder-Schetelig, P. Manoonpong, and F. Wörgötter, “Using
efference copy and a forward internal model for adaptive biped
walking,” Autonomous Robots, vol. 29, no. 3, pp. 357–366, Nov.
2010.

[23] N. Van der Noot, L. Colasanto, A. Barrea, J. van den Kieboom,
R. Ronsse, and A. J. Ijspeert, “Experimental validation of a bio-
inspired controller for dynamic walking with a humanoid robot,” in
2015 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Sept. 2015, pp. 393–400.

[24] D. Nguyen-Tuong and J. Peters, “Model learning for robot control:
a survey,” Cognitive Processing, vol. 12, no. 4, pp. 319–340, Nov.
2011.

[25] F. Heremans, N. Van der Noot, A. J. Ijspeert, and R. Ronsse, “Bio-
inspired balance controller for a humanoid robot,” in 2016 6th IEEE
International Conference on Biomedical Robotics and Biomechatron-
ics (BioRob), June 2016, pp. 441–448.

