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Abstract— Humanoid robots are gaining much interest nowa-
days. This is partly motivated by the ability of such robots to
replace humans in dangerous environments being specifically
designed for humans, such as man-made or natural disaster
scenarios. However, existing robots are far from reaching
human skills regarding the robustness to external perturbations
required for such tasks, although torque-controlled and even
bio-inspired robots hold new promises for research. A hu-
manoid robot robustly interacting with its environment should
be capable of handling highly uncertain ground structures,
collisions, and other external perturbations. In this paper, a
3D bio-inspired balance controller is developed using a virtual
lower limbs musculoskeletal model. An inverse muscular model
that transforms the desired torque patterns into muscular
stimulations closes the gap between traditional and bio-inspired
controllers. The main contribution consists in developing a
neural controller that computes the muscular stimulations
driving this musculoskeletal model. This neural controller
exploits the inverse model output to progressively learn the
appropriate muscular stimulations for rejecting disturbances,
without relying on the inverse model anymore. Two concur-
rent approaches are implemented to perform this autonomous
learning: a cerebellar model and a support vector regression
algorithm. The developed methods are tested in the Robotran
simulation environment with COMAN, a compliant child-sized
humanoid robot. Results illustrate that – at the end of the
learning phase – the robot manages to reject perturbations
by performing a full-body compensation requiring neither to
solve an inverse dynamic model nor to get force measurement.
Muscular stimulations are directly generated based on the
previously learned perturbations.

I. INTRODUCTION

Humanoid robotics has gained much interest during the
last decades. This interest for human-like robots is partly
driven by a strong incentive: evolving in environments made
for humans is challenging for a robot due to the numerous
artifacts that were specifically designed for us (stairs, doors,
levers, etc.). The quest for humanoid robots that can move
and act in those complex environments is therefore partly
motivated by scenarios where these robots could replace hu-
mans. This is particularly relevant in hazardous environments
such as man-made or natural disaster scenarios.

However, the world outside the lab is an uncontrolled
environment for legged humanoid robots, with unexpected
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ground levels, potential collisions and other external pertur-
bations. Coping with these unexpected perturbations requires
a robust balance controller. Despite major advances in the
field of robotics and automation, robots are still far from
reaching the superb ability of humans to balance in chal-
lenging situations. Taking inspiration from the human neu-
romechanical apparatus thus represents a promising research
avenue to bridge this gap. This idea has already been applied
for dynamic walking in simulation. For instance, a lower-
limbs musculoskeletal model comprising virtual muscles
was developed in [1]. Still in simulation, this model was
further incremented in [2] by the addition of a bio-inspired
oscillatory neural controller modulating the forward speed.
Nevertheless, the simulation/reality gap represents a chal-
lenge for traditional controllers. Bio-inspired controllers can
help in reducing this gap by providing natural compliance to
cope with the world non-idealities. For instance, [3] shows an
almost straightforward transfer of the controller in simulation
to the real humanoid robot.

Alternatively, legged robots also provide a fantastic tool
to improve our understanding of the human neuromuscu-
loskeletal apparatus. Indeed, robots offer to emulate isolated
components of this apparatus and so to test hypotheses
about their behavior. Moreover, robots can serve to simulate
pathologies and thus investigate their consequences. Finally,
bipedal robots offer the opportunity to generate a large
amount of data and thus to study the system sensitivity to a
large set of neuromechanical parameters.

Regarding postural control, different balancing strategies
were identified from human experiments. In the case of
small to medium perturbations, humans can maintain balance
using body coordination only, so that no stepping is required
[4]. However, the neuro-motor pathways leading to such
postural responses are not straightforward. Over the past
years, simplified models were elaborated to capture this com-
plexity. For instance, [5] introduced the Cerebellum Model
for Articulation Control (CMAC), a simplified cerebellum
model for robot control intended to provide motor learning
capabilities.

In addition, the recent developments of torque controlled
robots equipped with compliant actuators, i.e. series elastic
actuators, provide new tools to validate the aforementioned
neurological models. These new platforms also enhance the
use of compliant controllers, allowing robust interactions
with the environment. For example, [6] uses a passivity-
based admittance (compliant) controller for stabilization,
making the robot compliant to external steady-state pertur-
bations. Similarly, [7] modulates ground applied forces for
balancing. Such compliant controllers are well adapted to



situations with dynamic interactions such as balancing or
physical contacts with humans.

In this paper, we focus on perturbations that do not require
stepping to recover equilibrium. We merge bio-inspiration
and classical control techniques to achieve a novel controller.
In a nutshell, the contributions of this paper are: (i) the imple-
mentation of an inverse muscular model, (ii) the development
of a neural controller using machine learning techniques to
produce a regression model of the muscular stimulations
and (iii) the development of a training chain based on an
impedance controller. To the best of our knowledge, this
contribution is the first to report the use of machine learning
techniques to drive a 3D musculoskeletal model of the legs
for balance control. The developed method is validated in
simulation. This paper is structured as follows. In Section II,
the control framework is outlined. The neuromusculoskeletal
model and the learning mechanisms are described. Section III
details the simulation protocol used to validate the proposed
controller. Section IV describes the simulation results. Fi-
nally, the simulation outcomes are discussed in Section V.

II. POSTURAL CONTROL FRAMEWORK

This section details the framework providing a full-body
compensatory motion to counter 3D perturbations. A neuro-
musculoskeletal chain inspired by the human neuromechani-
cal apparatus is introduced to capture the robot controller (top
part of Fig. 1). This bio-inspired chain is composed of two
modules. A neural controller implemented by a regression
engine (machine learning) is in charge of generating virtual
muscular simulations. Using these stimulations, a 3D muscu-
loskeletal model generates joint torques applied to the lower
limbs. An impedance controller and an inverse muscular
model (lower part of Fig. 1) were further implemented in or-
der to generate the reference stimulations being required for
the learning process of the neural controller. The impedance
controller also drives upper body movements for which no
musculoskeletal model was developed.

A. Musculoskeletal model

A virtual musculoskeletal system was developed to drive
the lower-limbs degrees of freedom (Fig. 2), as an extension
of the musculoskeletal model developed by [1], [8].

The fundamental building block of the muscular model
depicted in Fig. 2 is the Hill-type muscle model (Fig. 2(b)
and [9]). Each muscle tendon unit (MTU) consists of two
main elements: an active contractile one (CE) and a passive
series elastic one (SE). On top of that, a parallel-elastic
element (PE) and a buffer elasticity element (BE) prevent
the muscle from collapsing on itself or overstretching when
it leaves its nominal operation range.

The sagittal muscles – soleus (SOL), tibialis anterior (TA),
gastrocnemius (GAS), vastus (VAS), hamstring (HAM), glu-
teus (GLU) and hip flexor (HFL) – were adapted from [1]
and the hip adduction (HAB)/abduction (HAD) muscles from
[8]. The model was further incremented with four extra
mono-articular muscles (HER, HIR, EVE, INV) for the hip
external/internal rotations and the foot eversion/inversion,
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Fig. 1. Architecture of the main controller. Based on the sensed
perturbation, the neural controller generates muscular stimulations (a) to
drive a musculoskeletal model. The resulting joint torques (b) actuate the
robot lower limbs. In parallel, an impedance controller computes desired
torques (c) being transformed into virtual stimulations (d) by an inverse
muscular model. These are used by the neural controller during the learning
phase. The impedance controller further computes the upper-limb reaction
torques (e), for which no muscular model was developed.
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Fig. 2. (a) 3D lower limbs musculoskeletal model comprising 13 Hill-type
muscles (b) per leg.

respectively. Similarly to [8], the actuation scheme is simpli-
fied by assuming the full decoupling of the sagittal, frontal
and transverse planes. This assumption does not capture the
whole complexity of the human motor system but can be
relaxed later with no major consequences for our framework.
Table I provides the anatomical parameters of the four extra
muscles using the template provided in [1] (see [8] for the
other muscles). These muscle parameters were estimated
using the lower-limbs model from [10] in OpenSim [11].
Dynamic scaling was used to tune the muscular parameters
to the particular robot being used [12][13] (see Section III
for the robot description).

Each virtual muscle is simulated by a direct model that
transforms muscle stimulations into muscle forces further
transformed into joint torques as a function of their insertion
points. At each time step, two operations are repeated:
(i) updating each muscle state based on the local skeletal con-
figuration and the muscular stimulations; and (ii) computing
the resulting joint torques based on the muscle forces and
skeletal configuration. More precisely, a muscular iteration



TABLE I
HIP EXTERNAL/INTERNAL ROTATION AND FOOT EVERSION/INVERSION

MUSCLES PARAMETERS

Muscle HER HIR EVE INV
Fmax [N ] 177 283.2 247.8 318.6
vmax [lopt/s] 18.36 18.36 18.36 18.36
lopt [cm] 1.708 3.416 2.135 2.135
lslack [cm] 2.135 2.989 10.675 12.81
r0 [cm] 1.708 1.281 1.281 0.854
φmax [deg] - - -10 5
φref [deg] 10 -20 -5 -10
ρ [−] 1 0.7 0.7 0.7

goes through the following steps (see Fig. 2(b) and [1] for
details):

1) Updating the muscle unit length lmtu based on the
current joint state.

2) Updating the muscle internal forces: the parallel Fpe

and buffer elastic Fbe forces based on the length lce
computed during the previous iteration.

3) Updating the force-length and force-velocity relation-
ships fl and fv .

4) Updating the muscle contraction speed vce.
5) Time integrating vce to obtain the contractile element

length lce.
For each leg, the transformation of muscle forces into joint

torques can be written as follows:

τ = R · F (1)

with τ ∈ R6×1 the joint torques (each leg has 6 degrees
of freedom), F ∈ R13×1 the muscular forces (each leg
has 13 muscles) and R ∈ R6×13 the moment arm matrix
depending on model parameters (pennation angles, etc.) and
on the current skeletal configuration.

B. Neural controller

The neural controller is implemented by a regression
engine that generates a muscular stimulation s (Fig. 1 (a)) for
each individual muscle. Once trained, this engine is expected
to produce adequate stimulations as a function of the sensed
perturbations. Two algorithms were implemented: CMAC
(Cerebellum Model for Articulation Control), a bio-inspired
neural network modeling the cerebellum organization [5];
and SVR (Support Vector Regression), a modern and power-
ful regression technique [14]. Both implementations share the
same learning objective, i.e. solving the regression problem
of finding appropriate muscular stimulations corresponding
to a given sensory input (Supervised Learning). Supervised
learning is used as a first step to assess the feasibility of
muscular control during balacing. Moreover, either CMAC
or SVR can only generate a 1D output, so that one learning
engine should be connected to each muscle. However, both
legs being identical, symmetrical muscles can be actuated
by the same engine but with different inputs such that
only one module per muscle type is required. In order to
comply with the body symmetry, sensory inputs in the frontal

+

Fig. 3. (a) CMAC model: each input range is discretized. A specific
multidimensional input activates a fixed number of input neurons (the orange
cells of x1 and x2 in this figure). Based on the activated input neurons,
specific core neurons are recruited. Their respective weights are summed
to produce the output y. (b) SVR: some data points are elected to become
support vectors.

and transverse plane must be mirrored, e.g. if one sensory
input is yCoM (the lateral displacement of the Center of
Mass), the right leg engines receive yCoM while the left
leg engines receive −yCoM . The same applies to the other
frontal/transverse signals.

1) Cerebellum model (CMAC): The cerebellum is known
to play a major role in motor adaptation [15]. CMAC is a
biologically relevant neural network model of the cerebellum
providing online learning capabilities. This model captures
the reinforcement learning mechanism of the cerebellar Purk-
inje cells. It builds up a large vector of weights, i.e. a lookup
table (LU) with high plasticity. During prediction, depend-
ing on the current inputs, some weights are appropriately
recruited and summed to produce the output (see Fig. 3(a)
for a simplified representation). A thorough description of
the gain recruiting and learning mechanisms is available in
[15]. In brief, when training is enabled, the core neurons
weights evolve according to the following rule:

wk ← wk + α
x̄− x
na

(k = 1, . . . , na) (2)

with wk being one of the gains recruited during the previous
prediction, α the learning rate, x̄, the reference stimulation,
x the predicted stimulation and na the number of associa-
tion units (AU), i.e. the number of gains recruited for the
prediction.

2) Support Vector Regression (SVR): SVR is an offline
learning method. It solves a convex optimization problem
so it always converges to the global optimum. The model
is generated by selecting appropriate data points as support
vectors (see Fig. 3(b)). When training is enabled, the current
sensory inputs and the associated reference stimulations
(from the training modules, see next section) are added
to the learning dataset. This extended dataset is then used
to recompute the regression model. The ε-SVR algorithm
provided by LIBSVM [16] was used in this contribution.
ε-SVR requires the tuning of four parameters in order to
provide an appropriate regression model: p the tolerated
precision, C the penalization cost, γ the kernel width and
K the kernel type. A grid search cross-validation procedure
with 10 folds and a radial basis function (RBF) kernel was
carried out to identify the optimal regression parameters γ



(kernel width) and p (tube size). Each sensory input data was
scaled to [−1, 1] prior to optimization.

The regression engines, CMAC and SVR, receive the
following sensory inputs: (i) all sagittal muscles and the hip
int/ext rotation muscles receive the CoM forward position
and velocity (xCoM , ẋCoM ), the CoM lateral displacement
(yCoM ), and the hip/foot pitch positions. Additionally, the
VAS muscle receives the knee position. (ii) Frontal muscles
receive yCoM , ẏCoM , and the hip/foot roll positions.

C. Reference stimulations

The previously mentioned machine learning algorithms
require reference stimulations in order to infer a regression
model. These references are computed using two modules
(see lower part of Fig. 1): (i) an impedance controller gen-
erating reference torques and (ii) an inverse muscular model
transforming these torques into muscular stimulations. The
error between the reference stimulations (from the inversion
module) and the predicted ones (from the neural controller)
is continuously monitored. In normal operation, i.e. once
the learning phase converged, the neural controller generates
adequate stimulations for the muscles such that it is able
to autonomously control the lower-limbs. However, if the
error goes above a given threshold, the inversion module
takes over the control while learning is enabled again for the
corresponding muscle. The cognitive control ratio is defined
as the proportion of simulation time for which the system is
under control of the impedance controller and the inversion
module (i.e. with learning being active). As the regression
model is trained, this ratio is expected to decrease, capturing
that the neural controller gradually becomes autonomous.

D. Compliant impedance controller

Coping with perturbations requires highly coordinated
body motions. Those motions require accurate torque tra-
jectories for a large set of scenarios, difficult to obtain
from human data. Therefore, we implemented the full-body
compliant force controller introduced in [7]. This controller
was selected because it requires neither an inverse kinematic
nor an inverse dynamic model. It can handle an arbitrary
number of contact points with the environment and only
requires the computation of the direct kinematic model of
each contact point [7]. Stability is maintained using virtual
feedback forces applied to the Center of Mass (CoM). The
robot modulates contact forces with the environment to
achieve these virtual forces. A complete description of the
algorithm goes beyond the scope of this paper, so that only
the main computational steps are outlined below:

1) Computing the forward kinematic model for all contact
points with the environment (position and Jacobian
with respect to the CoM) and CoM position/velocity.

2) Computing the user force fu as a proportional-
derivative (PD) feedback acting on the CoM.

3) Computing the environment applied forces with gravity
compensation as fp = fu+Mg, with M the robot total
mass and g the gravitational acceleration.

4) Computing the position of the desired Center of Pres-
sure (CoP) and solving a linear optimization problem
distributing the contact forces.

5) Transforming contact forces into joint torques using
the Jacobian matrices.

In the present contribution, the reference torques being
obtained after this step are fed to an inverse muscular module
that generates the corresponding muscular stimulations.

E. Inverse muscular model

Inverting the direct muscular model outlined in section II-
A requires two steps: (i) solving the over-actuation problem
for each leg, i.e. transforming the three sagittal torque
references (hip, knee and ankle pitch) and three non-sagittal
torques (hip yaw, hip and ankle roll) into 13 muscles forces;
and (ii) transforming these desired muscle forces into the
corresponding muscle stimulations.

Because multiple muscles actuate the same joint, the hu-
man musculoskeletal apparatus is redundant. Inverting equa-
tion (1) is indeed providing an infinite amount of solutions,
because the matrix R has rank 6. Isolating a specific solution
thus requires using a particular optimization technique. In
addition, the inversion should further obey some constraints.
Indeed, a muscle can only pull, i.e. provides positive force,
and saturates to a given maximal force. Consequently, each
force Fi should be bounded between 0 and Fmax.

1) Solving over-actuation: The inversion should be com-
puted in real-time since it is intended to work in a real-
time learning framework. A quick and efficient way to solve
this problem is to rely on linear programming. Indeed, the
problem can be stated using only linear constraints and a
linear objective function, i.e.

Objective: min

13∑
i=1

|Fi|/F i
max

Constraints: (i) 0 ≤ Fi ≤ Fmax
i (i = 1...13)

(ii) τ = R · F

Normalizing each force by its maximum force is expected
to distribute the forces according to the muscle capacities,
i.e. in a way similar to what humans would do. The linear
programming toolbox from the GLPK library (GNU Linear
Programming Kit [17]) was exploited to find the unique
optimal solution, i.e. the reference muscle forces.

2) Finding the muscular stimulations: The next step is,
for each muscle, to compute the neural stimulations corre-
sponding to this reference force. The following paragraph
details the steps required for this computation. The procedure
is closely linked to the direct model equations from [1].

From the current skeletal configuration, the first step
consists in computing all muscles lengths lmtu. The second
step consists (ii) in extracting the series element length based
on the desired muscular force. By definition, Fse = F , so
that,

lse = εref lslack
√
F/Fmax + lslack (3)



with F being the desired force, Fmax the muscle maximum
force, lslack the slack length (the series elastic element
length under which the buffer element engages) and εref
the muscle reference strain. Then (iii), as depicted in Fig. 2,
the contractile element length can be extracted using the total
muscle length lmtu:

lce = lmtu − lse (4)

The following step (iv) involves a time differentiation,
required to obtain the contractile velocity vce. Indeed, in
the direct model, the contractile length lce is obtained by
integrating the contractile velocity. This differentiation is
implemented using a backward finite differences scheme
of order three. Then, the internal forces and force/length
and force/velocity relationships are computed (v) following
the direct model. The last step (vi) requires to invert the
force relationship, bounding the result in the simulation
interval, which is [0.01; 1], the lower bound being the basal
activity, i.e. the minimum muscular activity. This provides
the muscular stimulation s that corresponds to the desired
force F :

s =
Fce

Fmaxflfv
(5)

Last but not least, we define the reconstruction error er
as the difference between the reference torques generated by
the impedance controller and the torques generated by the
musculoskeletal model when stimulated with the output of
the inversion module. This reconstruction error is central in
evaluating the performances of the inversion module.

III. VALIDATION TOOLS & PROTOCOLS
The proposed algorithms were validated by controlling a

simulation model of the 95 cm tall COmpliant HuMANoid
platform (COMAN, see Fig. 4). This robot, developed by the
Italian Institute of Technology (IIT), has 23 actuated degrees
of freedom (DOFs), most of them being equipped with series
elastic actuators [18], [19] and [20]. Each joint is equipped
with position, velocity and torque sensors. The robot also
features an inertial measurement unit (IMU) and 6-DOF feet
sensors measuring ground reaction forces and torques. Our
controller only uses the sensory inputs available on the actual
robot. The COMAN was modeled in a simulation environ-
ment called Robotran [21]. This simulator provides a direct
dynamics engine for rigid multi-body systems. An accurate
modeling of the robots series elastic joints was implemented
and described in [18]. For all the following experiments, the
robot joints are torque driven using the lower-level controller
available on the real robot. As depicted in Fig. 1, only the
lower limbs are driven by the musculoskeletal model while
the other joints are systematically driven by the impedance
controller.

In a first experiment, the muscular inversion module
was validated by comparing the reference and reconstructed
torques, i.e. the torques produced by the impedance con-
troller (Fig. 1 (c)) and the torques generated by the muscu-
loskeletal model being driven by the stimulations from the

Fig. 4. COMAN: a 23 DOF compliant humanoid robot: real robot and
simulation model (adapted from [3]).

inversion module (Fig. 1 (b)). The simulation started with the
robot standing straight with both feet aligned as depicted in
Fig. 4, rightmost panel. Three perturbations were applied on
the robot body, each lasting 0.2s and separated by 3s from
each other (see Fig. 4 for the forces application points): a
25N force on the robot trunk, horizontally in the sagittal
plane and in the forward direction; a 15N force on the robot
waist, horizontally in the frontal plane, lateral direction; and
a 20N force on the robot wrist, horizontally in the forward
direction. The signals were recorded with the impedance
controller governing the robot reactions to perturbations (i.e.
no learning in this case).

In a second experiment, the learning performance was
validated by recording the evolution of the cognitive control
ratio (see section II-C). The threshold error on the predicted
stimulations that triggers learning (cognitive control active)
was fixed to 0.04. Table II summarizes the machine learning
parameters used for this experiment. The simulation again
started with the robot standing straight with both feet aligned
as depicted in Fig. 4. The validation was performed through
two different perturbation scenarios. In the first one, per-
turbations were restricted to the sagittal plane. The robot
underwent a force perturbation on the torso with a random
magnitude in the range [−10, 30]N, every 4s and lasting 0.2s
each. A qualitative validation of the learning progress was
also provided for this scenario. The reference and predicted
stimulations were recorded at different stages of the learning
process for the same 10N push perturbation on the torso and
in the sagittal plane (0, 5 and 50 pushes). As more data
becomes available, learning should progress up to making
the robot able to predict the stimulations corresponding to
the sensory information arising from the perturbed posture.
In the second scenario, learning in the other planes (frontal
and transverse) was validated. The robot underwent a 3D
horizontal force perturbation on the trunk with a random
amplitude (“Push 1” application point in Fig. 4). The sagittal
and frontal components are uniformly selected in the ranges
[−5, 15]N and [−10, 10]N respectively. The duration was
fixed to 0.2s and the perturbation are triggered every 4s. For
both scenarios, five runs were performed. Both CMAC and
SVR were tested and compared in the first scenario, while the
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TABLE II
MACHINE LEARNING PARAMETERS

CMAC SVR
LU size Quant. #AU C γ ε K
400000 300 10 200 1 0.02 RBF

3D scenario was only tested with SVR due to the relatively
poorer performance of CMAC in 2D (see Section IV). SVR
offline retraining occurred every 15s or earlier if more than
5000 stimulation errors exceeding the threshold (across all
muscles) have been detected since the last retraining.

IV. RESULTS

The quality of the generated reference stimulations (mus-
cular inversion) and the ability of the robot to learn these
stimulations were tested in the simulation environment fol-
lowing the previously reported protocol. Fig. 5 shows the
robot recovery motion for a sagittal and a frontal perturbation
with the neural controller governing the robot motion. The
force under the four virtual foot contact points show how
the robot transferred the position of his CoP to stabilize the
motion of the CoM.

A. Inverse muscular reconstruction

Fig. 6 shows the 13 muscular stimulations for the right leg
that were generated for the first experiment (three pushes).
A noticeable element is that the gluteus muscle (GLU, see
Fig. 2) was never recruited by the optimization to counter
the perturbations. For the same set of perturbations, Fig. 7
shows the reference and reconstructed torques for the six
degrees of freedom from the right leg when using the inverse
muscular model. The mean squared error (mse) for each joint
is computed.

B. Cumulative learning

Fig. 8 gives a qualitative insight into the learning process
for the sagittal muscles. As more experience was accumu-
lated, the predicted stimulations (from the SVR regression
engine) became more accurate and converged towards the
reference stimulations (from the muscular inversion mod-
ule). At the beginning of the learning phase, the predicted
stimulations were systematically zero. At the end of the
learning phase, the residual error was systematically below
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Fig. 6. Muscular stimulations for all 13 muscles generated by the inverse
muscle model when the robot is receiving the benchmark perturbations.

the learning threshold. Fig. 9 shows the global results of the
second experiment, first scenario. In particular, it shows that
the control was gradually transferred from the impedance
controller to the neural controller as more training data
was available. After 160 pushes in the sagittal plane, while
SVR managed to fully control the robot, CMAC can only
predict accurate stimulations during around 75% of time.
In the case of learning with 3D horizontal perturbations
(second scenario), SVR also managed to reduce the cognitive
control ratio to a low value, as depicted in Fig. 10. A
video illustrating these results is provided as a supplementary
material.
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accuracy the reference torques (grey).
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Fig. 9. The cognitive control ratio decreases as more training data becomes
available. The figure overlays five runs while delivering perturbations in the
sagittal plane only.
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V. DISCUSSION & PERSPECTIVES

The previous section provided quantitative results about
the ability of the robot to predict muscular stimulations
necessary to keep balance. The torques reconstruction of
Fig. 7 shows an excellent performance for computing ad-
equate muscular stimulations. The small reconstruction error
has presumably different causes: (i) the limited accuracy of
the numerical derivative necessary to compute the muscles
contraction velocity, (ii) the basal muscular stimulation that
generates parasitic forces (muscular stimulations are bounded
between [0.01, 1] with the lower bound being the basal
activity) and (iii) the muscular saturation that limits the
muscles output force (muscular stimulations saturate to an
upper bound). The systematic silence of the gluteus muscle
(GLU) can be explained by the fact that the biarticular
hamstring muscle (HAM), also acting on the sagittal hip,
can generate the required torque alone.

We showed that the neural controller is able to learn the
stimulations with high accuracy, leading to an almost exclu-
sive control by the neural controller (i.e. with no muscular
model inversion) even for 3D random perturbations. The
residual error is probably due to the dimensional reduction of
the problem (SVR/CMAC engines only receive a subset of
all available sensory inputs to limit the nonlinear growth of
the model as a function of the dimension of the input space).
With a longer learning period, the robot would presumably
further reduce the cognitive control ratio to lower values,
the bottleneck being the richness of sensory inputs. We also



highlighted the better performance of SVR as compared to
CMAC for predicting stimulations when using the given
settings. Moreover, the neural prediction is fast compared
to the impedance computation (even faster with dedicated
hardware) which is important for real-time control. This is
highly desirable for future testing on real robots.

While muscles display interesting visco-elastic properties
that have perturbation filtering capabilities, they also enable
the coordination between joints due to the presence of
multi-articular muscles with variable stiffness. In the line
of this paper, these properties can be more thoroughly
explored to improve the controller robustness. Furthermore,
a reinforcement learning technique might outperform the
actual performances obtained using supervised learning from
the impedance controller. Also, the analysis of the learned
stimulations might show some correlations with the sensory
inputs, enabling the synthesis of simple neural control rules.

The development of the inverse muscular model is valu-
able to better understand the actual human behavior when
subject to perturbations. For instance, the stimulations com-
puted by this algorithm can be later compared to EMG
signals measured on humans. Or following the same bio-
inspired approach, data acquired during human balancing
experiments could also be used for learning, taking advantage
of biological optimisations. On top of that, the proposed
algorithm manages push recovery by computing virtual mus-
cle stimulations. Other algorithms using stimulations-driven
neuromuscular models (like the walking controllers of [2]
and [8]) already produce energy-efficient human-like gaits.
Incrementing them with the algorithms developed in this
paper would offer to use the same tools to produce virtual
muscle stimulations both for walking and for robust postural
control.

Finally, future work will focus on extending this controller
to counter large perturbations for which a stepping motion
is required.

VI. CONCLUSION

The developed neuromusculoskeletal model displayed the
ability to generate muscular stimulations to counter external
perturbations in order to keep balance control of a humanoid
robot. Two machine learning techniques, namely CMAC
and SVR, were applied for the generation of a regres-
sion model capturing the muscular stimulations required
for balance. An impedance controller regulating the CoM
position and a module inverting the Hill-muscle model were
also developed to produce reference stimulations required
during the learning process. The algorithm was tested in
simulation with a torque-controlled child-sized humanoid
robot (COMAN). The results suggest that the control can
be gradually transferred from the impedance/inverse model
(training modules) to the regression models (neural con-
troller), as learning progresses. This approach was validated
by applying random perturbations forces in the sagittal plane
and in the whole transverse plane. The robot managed to
learn the correct stimulations required to withstand small to
medium perturbations, i.e. with no stepping being necessary.
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