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Abstract— Reproducing human locomotion in simulation has
a variety of applications, from informing prosthetic and reha-
bilitation medicine to generating stable and human-like robot
or animated character movement. In prior work, however,
the focus has been on producing stable, natural gaits at a
single speed. Novel neuromuscular controllers blending feed-
forward and reflex-like control have shown promising success in
realizing bio-inspired speed-modulation of walking gaits while
adapting a handful of parameters. In this work, we present a
modified neuromuscular gait controller in the sagittal plane to
similarly realize speed modulation for running gaits. As a result,
our controller interpolates fewer than 10 parameters from a
stable initialization to realize a large range of running speeds
on a simulated bipedal platform. We discuss the speed-evolution
and kinematic significance of these selected parameters, and
analyze the controller’s velocity-tracking performance over the
speed range between 1.3 m/s and 1.7 m/s, which covers much
of human running speeds once scaled from platform height.

I. INTRODUCTION

Reproducing human locomotion in simulation has a vari-
ety of applications, from aiding prosthetic and rehabilitation
medicine to generating stable and human-like robot and
animated character movement [1]–[3]. Biologically-inspired
neuromuscular controllers are gradually expanding bound-
aries of biped locomotion research, and show promise for
enabling state-of-the-art speed modulation for walking and
running gaits [4]–[7].

Yet, human locomotion is far from being understood. Al-
though the presence of feed-forward control through central
pattern generators (CPGs) in ordinary human gaits is likely, it
is still a matter open to discussion [5], [8]. CPGs are neural
circuits found in some mammals that have the interesting
ability to produce periodic signals capable of regulating
locomotion from low-dimension control inputs [9].

Previously, biomechanical models have shown some suc-
cess in generating gaits capable of a range of speeds without
the introduction of feed-forward control. For instance, the
work of [10], later extended in [7], achieved such locomotion
on a simple human model equipped with virtual muscles
controlled solely by feedback signals that mimic reflexes.
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However, prior neuromuscular approaches investigated the
use of CPGs in biped control: [11] could adapt the locomo-
tion of a biped model on uneven terrains using a CPG, and
[12] developed a neuromuscular model that featured a CPG
to investigate the effects of a spinal cord injury on locomotor
abilities.

In [6] and [13], we developed a novel neuromuscular
controller recruiting both reflexes and a CPG to generate
walking gaits on a simulated model of COMAN, a 95
cm humanoid robot. This is consistent with Kuo’s frame-
work, which suggests combining feedback and feed-forward
pathways in the control of a periodic locomotor task [14],
leveraging the advantages of both. This blended control
system enabled continuous tracking of walking speed in the
sagittal plane (i.e. in 2D) on the COMAN platform (from 0.4
to 0.9m/s) by adapting a small set of high-level parameters
as linear functions of a target speed. Once scaled for height,
this range is similar to that of an average adult. Indeed,
similarly scaling our running speed results by height predicts
a range between 2m/s and 3m/s.

The success of neuromuscular approaches were not limited
to walking gaits. In [2], intermediate gait phases were
introduced to the neuromuscular gait controller by Geyer
et al. in order to produce walking and running gaits. This
promising method is hindered by a costly optimization over
124 parameters to produce a single speed. In [7], running
gaits were realized on a reflex-based 2D human model,
which is capable of tracking speeds from 2.4 to 4m/s using
a linear policy optimized once over 64 parameters. In the
present contribution, we demonstrate a marked reduction in
optimization complexity by leveraging mammalian spinal
cord neuroanatomy as in [6]. By interpolating under 10
parameters as low-degree polynomial functions of desired
speed, our mixed neuromuscular controller featuring a 6-
neuron CPG is capable of generating real-time speed tracking
running gaits on a humanoid.

This document is divided as follows: in Section II, the
COMAN platform is presented in its simulation environ-
ment; the modified neuromuscular controller is described
in Section III to realize a running gait at a single speed;
this controller is later augmented in Section IV to develop
the velocity tracking policy, before analyzing the resulting
gait features in Section V; finally, Section VI discusses our
conclusions.1

1Code for this project is available under MIT License at
https://github.com/mharding01/augmented-neuromuscular-RT-running.
Refer to project for computational details not included in this document
due to space constraints.



II. COMAN MODEL AND ENVIRONMENT

As in our previous work, [6] and [13], for our locomotion
platform we employed a 3D model of the COMAN humanoid
constrained to the sagittal plane, which is equipped with 23
degrees of freedom and stands at 95 cm tall ([15], [16]).
Figure 1a illustrates our modified neuromuscular system
overlayed onto the model.

The results presented in this contribution were obtained
using the Robotran simulation software [17], [18], a symbolic
environment for multi-body systems developed within the
Université catholique de Louvain. The ground contact model
was implemented as detailed in [10], while the actuators’
dynamics were modeled as explained in [19]. Additionally,
to mimic uncertainty on the real platform, uniform noise with
a maximal amplitude of 0.4Nm was added to each torque
measurement. The Runge-Kutta integration scheme with a
125µs discrete time step was employed. More information
about the robot and its simulator is provided in [13], [19].

Finally, a new biomechanically accurate foot model was
used to better allow proper push-off before the mid-gait
flight phase [20]. Each foot is composed of two rigid plates
(105 and 35mm for the sole and phalanges, respectively -
see Figure 1a), connected by a torsion spring. The passive
compliance of this spring is modeled as τtoe = −ktoe ϕtoe−
dtoe ˙ϕtoe, where τtoe is the resulting torque, ϕtoe the toe joint
angle and ˙ϕtoe its time derivative. The torsion spring stiffness
ktoe is set to 30Nm/rad and its damping coefficient dtoe
is set to 1Nms/rad.

III. NEUROMUSCULAR CONTROLLER

All the leg and arm sagittal joints are controlled to track
torques references, while the remaining joints are maintained
to their static home position. The purpose of the controller is
therefore to produce torque references for these leg and arm
sagittal joints. These references are obtained using virtual
muscles commanded by the combined action of reflexes
(feedback signals) and a CPG (feed-forward signals).

A. Musculo-skeletal model

Similarly to [10], locomotion is achieved by recruiting
virtual muscles generating torques at the joint level. In short,
each group of muscles is represented by a set of equations
based on the Hill muscle model [21]. When excited, these
muscles react by contracting and applying forces on the body.
Then, the equivalent torques applied at the joint level can
be deduced from the lever arm joining the muscle virtual
attachment points to the joints. These torques are sent as
torque references, in turn producing voltages at the motor
level using the PI controller described in [22].

In our case, eight Hill-type muscles are recruited for each
leg, and four muscles actuate each arm. They are depicted in
Figure 1a. Their characteristics are described in [10], [13],
[23]. Each muscle is controlled by its activation Am, which
captures the neural signal provided by motoneurons. This
signal is related to a neural input Sm, the muscle stimulation,
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Fig. 1: (a) Leg and arm sagittal joints are actuated using
12 different Hill-type muscle models stimulated by reflex
and feed-forward CPG signals. (b) The CPG network of
Matsuoka oscillators with time constant τ , inibition factors
β∗ (self-inhibition) and η∗ (mutual inhibition), and input
signals ui, as detailed in previous work [6].

using a first-order low-pass filter capturing the excitation-
contraction coupling [10]. Therefore, the controller coordi-
nates neural muscle stimulation to coordinate muscle action.

B. Central pattern generator design

In this contribution, a central pattern generator (CPG)
network is recruited to drive the proximal muscles, i.e. the
muscles acting at the hip level. This is consistent with the
proximo-distal gradient hypothesis that postulates that distal
locomotor muscles are controlled mostly by reflexes as they
are most impacted by external perturbations, while stronger,
proximal ones are mainly driven by CPG signals [5], [24].

Here, the CPG network affects the hip flexors (HFL), glu-
teus (GLU) and biarticular hamstring muscle groups (HAM),
i.e. the muscles having a large impact on the hip joint. The
other leg muscles, i.e. the soleus (SOL), tibialis anterior (TA),
gastrocnemius (GAS), vasti (VAS) and rectus femoris muscle
groups (RF) are only commanded with reflexes. These virtual
muscles are depicted in Figure 1a.

The CPG structure is designed as a six-neuron network of
Mastusoka oscillators [25], [26]. This bio-inspired structure
captures the mutual inhibitions between half-centers located
in the spinal chord and is used to model the neuron firing
rates in the upper and lower extremities [27].

In this network, each neuron Ni state is represented by its
firing rate xi whose evolution with time is governed by input
stimulation and a balance of self-inhibition and inhibition by
the antagonistic half-center. Computational details are given
in [6]. Figure 1b depicts the Matsuoka network developed in
this contribution.

Interestingly, CPGs present attractive properties like dis-
tributed control, redundancies handling, and locomotion
modulation using simple control signals [9]. In particular,
they provide frequency and phasing signals, if properly
synchronized with the locomotion gait. This is potentially
relevant to activate reflex signals at the right moment or



to send feed-forward signals coming from the CPG to the
virtual muscles.

The full CPG network (see Figure 1b) is composed of four
fully connected neurons called the primary oscillators (N1,
N2, N4 and N5), and two extra neurons called the secondary
oscillators (N3 and N6). The secondary oscillators are driven
by the primary ones but do not impact them.

More precisely, the primary neurons fulfill two main
functions: triggering the proximal muscle reflexes at the
right timing and sending descending stimulations to the HFL
muscles. In particular, neuron N2 is supposed to fire just after
the left strike, while N5 is supposed to fire just after the right
strike. The secondary neurons N3 and N6 are mainly aligned
with neurons N1 and N4, although their firing rates differ,
due to different inhibition parameters being recruited. These
secondary neurons are in charge of stimulating the HAM
muscle before strike impact.

C. Muscle stimulations

The primary neurons firing rates are used to segment the
running gait into four distinct phases for each leg, requiring
different computation rules for the muscle stimulations. This
is done by detecting when the corresponding firing rates are
positive.

In the following rules, most reflexes are adapted from [10]
and their equations can also be found in the code repository.
The neural signal delays introduced in that contribution
are also implemented here. Regarding feed-forward control
through CPG signals, the stimulations’ contributions are
computed proportionally to the CPG outputs, defined as
yi = [xi]

+. All muscle stimulations are bounded in the
[0.01; 1] interval, see [6] for more details.

The first phase is triggered when x5 is positive for the right
leg, or when x2 is positive for the left leg. This corresponds
to the phase directly following the corresponding leg strike
impact. During that phase, the torso orientation angle θt
is driven to a given reference θref using PD-control as
described in [2], [10].

Then, the next phase mainly includes the swing initiation
and the flying phase, happening before the contralateral leg
strike impact. This is detected when x1 is positive for the
right leg, or when x4 is positive for the left leg. During that
phase, the hip is propelled with the CPG control of the HFL
muscle detailed in (1), where kHFL,1 and kHFL,2 are two
gains. Its antagonist muscles GLU and HAM only receive
the minimal prestimulation SMIN = 0.01.

SHFL,R = kHFL,1 y1 + kHFL,2 y2

SHFL,L = kHFL,1 y4 + kHFL,2 y5
(1)

After the other leg strike (being detected when x2 is
positive for the right leg, or when x5 is positive for the left
leg), swing-leg retraction is enforced by using the positive
force-feedback reflex rules on the GLU and HAM muscles,
as in [2], [10]. During this sub-phase, the HFL muscle still
receives the CPG control detailed in Equation (1).

In the last phase (preceding the ipsilateral leg strike, and
corresponding to x4 positive for the right leg or x1 positive

for the left leg), the stance preparation is improved by
adjusting the hip angle ϕh to a given reference ϕh,ref , as
suggested in [28] and [2]. This is done with reflex rules that
drive the HFL and GLU muscles with PD control on this
desired angle. At the same time, the knee flexion is controlled
by the CPG, using Equation (2).

SHAM,R = kHAM y6 SHAM,L = kHAM y3 (2)

Knee stretching is mainly achieved using the RF and VAS
muscles. Similarly to [2], the swing initiation during the
stance phase is detected when the signed horizontal distance
between the COM and the ankle normalized by the leg length
(d̃) is larger than a fixed threshold dsi. Similarly, the stance
preparation during the swing phase is detected when d̃ < dsp,
where dsp is another fixed threshold.

During stance phase, the RF muscle only receives a basic
prestimulation S0,RF,st. At the same time, the VAS muscle
is activated with a positive force feedback, which can be
inhibited when the knee angle ϕk exceeds a given threshold
ϕk,th,st, as in [2].

During swing initiation, the efforts are being transfered
from the VAS to the RF muscles. This is done by incre-
menting the RF stimulation by a fixed amount siRF and by
decreasing the VAS one by a fixed amount siV AS .

The early swing phase keeps the RF and VAS muscles
nearly silent by sending fixed prestimulations S0,RF,sw to
RF and S0,V AS,sw to VAS. However, the knee joint angle
ϕk is expected to reach a given threshold ϕk,th,sw before
the next strike. Using PD control, this is done with the VAS
muscle during the stance preparation as in [2].

Finally, the control of the ankle muscles is implemented
as described in [10]. More precisely, a mixture of force and
length feedback rules are applied to SOL, TA, and GAS mus-
cles during the stance phase to create late-stance dorsiflexion
for thrust. During the swing phase, plantarflexion is enabled
by minimally stimulating SOL and GAS while controlling
TA with length feedback rules.

Upper-body control is also active to provide rotational
stability for the torso in the transverse plane: the arms
swinging motion is controlled by the shoulder flexion (SFL)
and extension (SET) muscles at the shoulder level and by
the elbow extension (EET) and flexion (EFL) muscles for
the elbow (see Figure 1a). All these muscles rely on the
following feedback rules tracking desired joint positions
(with ∆ϕsh = ϕsh,ref − ϕsh and ∆ϕelb = ϕelb,ref − ϕelb):

SSFL = karm [∆ϕsh]− SEFL = karm [∆ϕelb]
−

SSET = karm [∆ϕsh]+ SEET = karm [∆ϕelb]
+ (3)

where ϕsh and ϕelb are respectively the shoulder and el-
bow joint positions, ϕsh,ref and ϕelb,ref are their references
and karm is a constant gain arbitrarily set to 5. ϕelb,ref is
set to a constant reference of −0.25 rad to keep a constant
position for the elbow.

Similarly to [2], the arm swing motion is obtained by
relating the shoulder target angle position to the difference in



the sagittal hip joint positions ϕhip,R and ϕhip,L, respectively
for the right and left legs. This is captured by the following
equations:

ϕsh,ref,R = ksh (ϕhip,L − ϕhip,R) − Θsh

ϕsh,ref,L = ksh (ϕhip,R − ϕhip,L) − Θsh

(4)

where Θsh and ksh are both arbitrarily set to 0.3.

D. Gait initialization

As a part of our optimization procedure within a simulated
environment, we additionally include parameters dictating
the initial dynamics of the biped. We chose to initialize
the biped’s initial velocity and joint parameters, which are
reported in code repository, so that the biped begins in the
flying phase of its running gait. The initial forward velocity
of the center of mass, ẋw, is abritrarily set to 1.5m/s, which
lies in the middle of the targetted speed range, i.e. [1.3;1.7]
m/s. The initial joint angles of the elbows and shoulders
are set to their respective initial position references (see
Section III-C). The elbow speeds are initially zero, and the
right shoulder speed is set to ϕ̇sh, which is opposite that of
the left shoulder speed (see code repository for more details).

E. Gait controller optimization

Many unknown parameters were introduced in the con-
troller development and in the simulation initial dynamics.
These parameters are listed on the code repository together
with their respective bounds. Here, the tuning of these pa-
rameters was performed using a particle swarm optimization
(PSO) algorithm [29].

More precisely, an optimization procedure maximizes the
sum of multiple weighted Gaussian functions that reward
controller parameter values which attain desired gait velocity,
stabilty, synchronization, and posture (among other charac-
teristics). Unstable local minima represented by controller
instances that repeatedly collapse during 70 s real-time trial
simulations were discarded. The computation of this global
fitness function is fully described in Appendix VI-A.

IV. SPEED ADAPTATION

In this section, the running controller is augmented to
achieve speed tracking through the modulation of a small
set of parameters. The following experiment was performed
to study the impact of these parameters on the running speed.
A baseline optimization was carried out as described in
Section III-E, with a target speed of 1.5m/s. The resulting
running controller was called the initial controller. Then, all
the controller’s optimized parameters’ values were frozen
before new optimizations were performed targeting eleven
key chosen parameters listed in Table I.

As in our previous work, [6], it was critical to analyze the
parameterization of the CPG time-constant τ and hip muscle
CPG output gains kHFL,1, kHFL,2, kHAM to appropriately
time all CPG signals and strengthen hip and knee stimulation
during leg swing, respectively. To regulate torso lean during
stance and perhaps better prepare the knee for impact at

TABLE I: The p-values associated with the polynomial linear
least squares approximations of the speed-evolution data
provided in Figure 2. Each p-value is computed using the
lack of fit sum of squares analysis [30].

order 0 order 1 order 2 selected
τ 0 0.017 0.026 2
kHFL,1 0.036 0.102 0.093 1
kHFL,2 0.002 0.117 0.825 2
kHAM 0.146 0.146 0.356 2
θref 0.026 0.022 0.021 0
ϕh,ref 0.608 0.577 0.642 0
kϕ,k 0.239 0.175 0.117 0
GV AS 0.014 0.104 0.071 1
GGAS 0.612 0.86 0.781 1
GSOL 0.275 0.247 0.517 2
GS−T 0.002 0.653 0.647 1

different speeds, we also selected the torso reference angle
θref and hip reference angle ϕh,ref .

At the knee level, we also chose to focus on the effect of
the low-level gains GV AS and kϕ,k on speed, as these may
regulate stride length through knee strength and angle at toe
push-off. Lastly, in order to dictate toe push-off strength, we
chose to analyze the three ankle gains during stance: GSOL,
GGAS , and the plantar flexion-inhibiting GS−T .

In these new optimizations, the initial controller is used
for the first six steps, after which the values of the chosen
parameters were instantaneously updated. Only the steady-
state speed was measured in each trial during optimization. In
order to account for the non-determinism of the optimization
procedure, these reduced optimizations were performed five
times each for target speeds from 1.3 to 1.7m/s at 0.05m/s
intervals.

The results are visible in Figure 2, where the evolution of
these parameters with the measured speed can be observed.
As in prior work, the parameters’ dependence on speed can
be approximated using polynomial functions. In order to
select appropriate polynomial orders capturing the essence
of the curve without over-fitting, a model goodness-of-fit
analysis using the sum of squared values of the prediction
errors was used, as described in [13], [30]. In short, for each
pair of parameter and polynomial order, the corresponding
p-value measures the likeliness that the selected order is
appropriate to represent the parameter evolution. These p-
values are gathered in Table I, for orders 0, 1 and 2. The
order with the highest p-value was then selected. The only
exception is the parameter ϕh,ref , whose p-values for orders
0 and 2 are very close. Therefore, we arbitrarily selected the
order 0 for this parameter.

The polynomial approximations for the selected orders are
depicted with dashed lines in Figure 2. The time constant τ
decreases for faster speeds, thus favoring higher step fre-
quencies. Interestingly, this trend amplifies for faster speeds,
indicating that the robot favors step length adaptation for
slow speeds, and step frequency adaptation for faster speeds.

The hip flexor is stimulated by two CPG gains during
the swing phase: the swing initiation gain kHFL,1 and the
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Fig. 2: Five optimizations are performed for each target speed (from 1.3 m/s to 1.7 m/s with an interval of
0.05 m/s).The actual speed of each solution is measured, along with the optimized value of the eleven open key
parameters. For each target speed, we gather the five optimization final results, reporting their mean and standard
deviations. For graph legibility, the error bars represent a half-standard deviation. Dashed lines correspond to the
polynomial approximations whose order is computed in Table I using the minimum mean square error method.

mid-swing gain kHFL,2. In particular, kHFL,2 shows an
increasing trend with speed (except for the slowest speeds),
resulting in larger hip flexion, and so in longer step lengths
for the fastest speeds. In contrast, the negative trend of the
swing-initiation stimulation gain kHFL,1 remains unclear,
but its relative variation is small (compared to the one for
kHFL,2), and should not significantly impact the gait.

The HAM gain kHAM obtained its largest values at the
speed extrema. This increases the knee flexion before stance
using the HAM muscle, therefore preventing hyper-extension
and enabling greater shock-absorption to occur. At high
speed, this is useful to counter the effects of the increased
step length. At low speeds, this increase of the kHAM gain
helps to reduce the biped speed.

No trend is observed for the torso reference angle θref ,
indicating that this value can be kept constant. This might be
due to the optimization stage which aimed at maintaining an
upright posture (see Appendix VI-A). This stage was inspired
from [2], in order to achieve more robust running gaits.
However, [7] argued that modulating the torso orientation
is a dominant contributor for running speed acceleration and
deceleration, such that, intuitively, a forward lean can help
to realize faster speeds. Similarly to θref , no clear trend is
observed for the hip reference angle ϕh,ref .

Regarding knee control during stance, the increase of
the GV AS gain favors legs stretching for faster speeds. In
contrast, the parameter kϕ,k, in charge of preventing knee
overextension, is not significantly affected by the running
speed.

Finally, both the SOL and GAS muscles act on the
ankle to create forward thrust (via plantarflexion through the
GSOL and GGAS gains), while the antagonist TA muscle
is inhibited using the GS−T gain, to avoid unnecessarily

fighting against the SOL and GAS actions. Intuitively, these
three parameters were expected to increase with speed, in
order to favor larger push-offs for the fastest speeds. This
trend is clearly visible for the GS−T gain and for the major
part of the GSOL evolution. However, for slow speeds, the
opposite trend is observed for GSOL. Interestingly, the GAS
muscle parameter displays a negative trend, thus favoring
larger thrust for slow speeds. A possible explanation is that
a significant part of the ankle propulsion efforts is transfered
from the SOL to the GAS muscle for slower speeds.

Based on these results, new optimizations can be per-
formed, in order to co-optimize all the controller parameters
for the whole range of speeds. The strategy is the following.
Among the eleven key parameters studied, eight presented
linear or quadratic evolution trends with speed: τ , kHFL,1,
kHFL,2, kHAM , GV AS , GSOL, GGAS , GS−T (see Table I).
These parameters were replaced by their corresponding
linear or quadratic functions of the target speed and the
remaining parameters were optimized to constant values, as
presented in the code repository. Then, each set of optimized
parameters was evaluated successively with different target
speeds, according to the requested speed range. The fitness
function was finally obtained as the sum of component fitness
functions computed for each run, as detailed in Appendix VI-
A.

V. RESULTS

The results presented in this section were obtained after
a single optimization on the range of speeds from 1.25 to
1.7m/s, i.e. on a range similar to the one of Figure 2, but
slightly extended towards the lowest speeds. The resulting
gait controller is first presented during a speed tracking
experiment. The controller’s main gait features and their
evolution with speed are then analyzed.
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A. Speed tracking

First, the robot forward speed reference vref was modu-
lated by an operator in the [1.25; 1.7]m/s range, during 70 s.
Its evolution is displayed in Figure 3. The modulation of this
parameter directly impacted the eight selected key parame-
ters, according to the rules summarized the Git repository.
The evolution of the robot actual speed is also displayed
in Figure 3. In Figure 4, snapshots of this experiment are
presented when COMAN was running at a speed close to
the middle of the speed range (1.42m/s).

Overall, the lowest commands (see time interval [8; 18] s
in Figure 3) resulted in stable running, although the biped’s
minimum speed hovered above 1.3m/s. For speed refer-
ences beyond 1.65m/s ([6; 7] s), the gait was most unstable
and typically resulted in a forward collapse. At speeds
above 1.55m/s ([25; 30] s and [44; 48] s), it is apparent
that optimization favored producing a fragile acceleration-
deceleration gait pattern characterized by varying stride
lengths in order to achieve the target average speed. Finally,
speed accelerations and decelerations were both around
0.145m/s2 in absolute value.

The snapshots of Figure 4 illustrate the running gait
motion. In particular, foot strikes are visible in panels (a),
(f) and (k), push-off phases in panels (c) and (h) and flying
phases in panels (e) and (j).

B. Gait features

Using the same controller, the following gait features were
studied: stride frequency and length, flying phase ratio, and
metabolic energy consumption (evaluated as presented in
[31], and normalized to the biped mass and to the traveled
distance). These were studied for constant speed references
vref evolving in the [1.25; 1.6]m/s range at intervals of
0.05m/s. Indeed, as mentioned in Section V-A, faster speeds
could be maintained for a short period, and here we report
overall, steady-state gait feature metrics. These metrics are
plotted by actual biped speed in Figure 5.

Both stride frequency and stride length are observed to
vary by 10 % around their center values over the running

speed range and increase proportionally to speed (see Figures
5a and 5b). Both stride features appear to contribute in equal
proportion to speed modulation for our gait controller, which
deviates from the observation that stride length should govern
human running speed more than gait period [32].

Regarding the flying phase ratio, a slight increase is
observed for faster speed references (except for vref =
1.6m/s). This speed evolution might suggest that the opti-
mizer favored stronger toe push-off for faster speeds, which
resulted in longer flying phases. Proportionally, however, the
flight phase ratio remains within 7 % of its average value,
30 %, which indicates that this trend may not be significant.

Finally, greater stride length and flight time contribute to
the increased gait-cycle efficiency for higher speeds. Figure
5d illustrates a decrease in metabolic energy cost per unit
distance as the speed increases, which illustrates why running
gaits are favored in humans for higher speed ranges. Beyond
a certain running speed, a modified running gait akin to
sprinting may be more efficient and naturally favored.

VI. DISCUSSION

In this contribution, we developed a neuromuscular con-
troller mixing both reflexes and CPG signals to control the
speed of a running biped. The modulation of eight key
control parameters as linear or quadratic functions of the
target speed resulted in the modulation of the biped’s forward
speed. The selection of these key parameters was done by
studying the evolution of these parameters with the target
speed.

Speeds could be stably tracked in the range from 1.3 to
1.6m/s. For vref around 1.7m/s, speed tracking could
continue only for brief periods of time. For slower speed
commands, the controller failed to produce the shorter strides
necessary to meet the lowest target speed. This may be due
to an overactive hip flexor during swing. In contrast, the
speed adaptation of the reflex-based controller developed in
[7] could reach speeds ranging from 2.4 to 4m/s, on an
adult-sized model. Once scaled to the size of COMAN, this
lower speed bound is similar to ours. However, the model
in [7] could reach speeds approximately 30 % higher than
those of our controller. In that contribution, this was achieved
by adapting 64 parameters as linear functions of the target
speed.

Therefore, it seems that this increase in the number of
parameters being modulated allows for larger speed ranges.
Our controller could therefore be incremented by adapting
a few more parameters as functions of the forward speed.
In particular, [7] theorized that the adaptation of the torso
lean angle could play a major role in speed modulation.
If the oscillating speed pattern observed at higher running
speeds is a symptom of an under-parameterized controller,
then parameterizing a torso lean reference could contribute
to steadier speed tracking above 1.55m/s and beyond.
During our analysis, this parameter appeared to remain quite
constant with speed alterations. However, this may be due
to our fitness function a component of which enforces an
upright posture to increase stability as suggested in [2].



(a)
t = 41.76s

(b)
t = 41.81s

(c)
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(g)
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(h)
t = 42.11s

(i)
t = 42.16s

(j)
t = 42.21s
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t = 42.26s
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t = 42.31s

Fig. 4: Snapshots of COMAN gait during the experiment from Figure 3 demonstrating an average speed of 1.42m/s.
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Fig. 5: Panel (a) presents the stride (i.e. two steps) frequency, while panel (b) shows the stride length. Panel (c) displays the
flying phase ratio. In panel (d), the lower-limb muscles’ metabolic energy consumption per unit distance (in the sagittal plane)
becomes more efficient at greater speeds. Each data point includes the mean and standard deviation from five simulation
runs for a constant speed reference vref in the range 1.25m/s to 1.6m/s at 0.05m/s intervals.

A natural extension of this work would be to add lateral
control in order to reach full 3D running. To begin with, we
have already managed to obtain 3D walking gaits in [13].

Another interesting avenue to explore is to use the CPG
to trigger transitional knee reflexes between stance and
swing phases. In the present contribution, these intermediate
reflexes are prompted by position of the center of mass
(COM). This strategy was adapted from [2], where no CPG
control was implemented. Further studies could analyze the
gait stability of a controller that coordinates not only hip
muscle stimulation but also critical inter-phase reflexes from
CPG firing rates.

Finally, the robustness of the controller to ground peturba-
tions could be improved particularly for the higher speeds.
For instance, in [20], we showed that the use of prosthetic-
like compliant feet during walking could improve the biped
robustness on uneven grounds. As such, the speed-tracking
controller could be studied again while equiped with these
prosthetic feet. Another avenue to explore is presented in
[33] in which a method is developed to learn muscle stimu-
lations that resist unpredicted external perturbations. As this
previous approach also relies on muscular control, a similar
strategy could be investigated for running gaits to improve
biped robustness perhaps based on the desired COM position.

APPENDICES

A. Optimizer fitness function

A global fitness function is computed by aggregating the
scores of 7 component functions that reward certain gait
characteristics after each simulation run. Each run ends after
70 s or sooner due to robot collapse. component score from
largest to smallest, these gait characteristics are 1) average
speed, 2) timing of CPG signals relative to foot strikes,

3) torso posture, 4) total time before collapse, 5) distance
traveled, 6) existence of significant flight phase, and 7)
metabolic energy expenditure.

Two types of component functions are used: 1) a clamped
linear function that constrains reward within a non-negative
range using Equation (5) or 2) a bell-shaped function cen-
tered at x∗ that distributes reward according to a defined
Gaussian shown in Equation (6). The Gaussian is parame-
terized by (x∗; α; β), and the linear function by (c; γ).

g(x) = max(0,min(cx, γ)) (5)

f(x) = β e−α (x−x∗)2 (6)

The foremost component function rewards the average
speed of gait controllers xvavg

using a Gaussian fvel centered
at a target speed vref defined by (vref ; 85 s2/m2; 700). The
next strongest contributing component function encourages
the synchronization of the neuron firing rates with foot
strikes, which is necessary for the CPG to stably align hip
stimulation with distal reflexes. The average prediction error
xcpg of neurons N2 and N5 (predicting left and right leg foot
strikes, respectively) is minimized using a Gaussian fcpg de-
fined by (0 s; 1100 s−2; 500). Similarly to [2], the optimizer
also aims to maintain an upright posture by minimizing mean
torso angle in the sagittal plane xθtorso using the third largest
component Gaussian fposture defined by (0◦; 20◦

−2

; 350).
Next in order of contribution to the global fitness, two

component linear functions improve gait robustness by re-
warding the running time and distance traveled before falling.
A linear function gfall, which is defined by (30/7 s−1; 300),
rewards gaits proportional to the time it took to collapse
before the simulation completes xttf . Another linear function



gdist with parameters (6m−1; 300) takes as input the total
distance traveled xdist and rewards maximally beyond 50m.

A running gait is favored by constraining the propor-
tion of the gait period spent in flight phase to be above
10 %. More precisely, a modified Gaussian fflight given
the average flight phase proportion xpflight

is specified
by (.10; 450; 250); however, for input exceeding 0.1, the
maximal reward is granted.

A final component Gaussian fenergy, which is parame-
terized by (0 J

m·kg ; 0.01 (m·kg)2
J2 ; 200), aims to minimize

the equivalent metabolic energy consumption (as computed
by [31]) in virtual leg muscle contraction per unit distance
traveled. The motivation for this is to further encourage the
generation of a human-like running gait. Further implemen-
tation details can be found in the source repository.
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