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Abstract— Deploying humanoid robots in complex and un-
structured environments requires the development of efficient
and adaptive locomotion controllers. Bio-inspiration holds pro-
mises in this perspective, since humans are known to have
both an energy efficient gait, and the capacity to modulate
it across several features like forward speed and step length
and height. In this paper, we report the development of a
bio-inspired controller for bipedal walking that can achieve
controlled modulations of the step height and length over a large
range. This controller builds upon our previous work where
we combined both a Central Pattern Generator (CPG) and
reflex-like modulations with a layer of virtual muscles providing
human-like leg impedance. Here, we report first a sensitivity
analysis that was performed to identify those among the many
parameters of our controller that can actually modulate the
step height and length. Then, we report experimental results
illustrating such controlled modulations over a large parameter
space.

I. INTRODUCTION

Nowadays, there are significant research efforts being
spent in developing skilled humanoid robots. These robots
can be used in a wide variety of situations, ranging from
looking through debris in devastated areas [1] to providing
support in various tasks of everyday life [2]. Dynamic
walking with a bipedal robot can be achieved using several
approaches. Among them, those relying on the zero-moment
point (ZMP), an indicator of dynamic stability [3], are likely
the most popular. However, this approach tends to produce
gaits that are energy inefficient, not robust to perturbations
and not able to recover after losing balance [4]. These
limitations hinder existing robots from being used to their
full potential. There is thus a growing need for more human-
like bipedal robots, both regarding performance, energy-
efficiency and gait modularity.

Locomotion controllers relying on ’Limit Cycle Walking’
hold promises in this perspective: the gait is considered as
a limit cycle whose global stability is prevalent to its local
stability [5]. Bio-inspired bottom-up approaches belong to
this category, mainly because they exploit passive dynamics
while providing local torque control instead of stiff joint
trajectory control. Because they do not require full-featured
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Fig. 1: The six Pattern Formation (PF) Neurons NA−F send
stimulations to the proximal muscles (HFL, GLU, HAM,
BFSH, RF) while the distal ones are only driven by reflexes.
HFL and GLU are stimulated by both CPG and reflexes.
The four Rhythm Generator (RG) neurons N1−4 control the
oscillation frequency and coordinate the six PF neurons.

dynamic models, biological approaches are also less compu-
tationally greedy [6]. One of these approaches is the muscle-
reflex model developed by Geyer and Herr [7], which embeds
bio-relevant force-position and force-velocity relationships,
and implements joint torque control by emulating virtual
muscles and locomotion reflexes. Interestingly, this model
has already been ported to a real humanoid robot [8].

Another control circuitry that is often used in bio-inspired
locomotion controllers is the one of central pattern generator
(CPG) [4], [9]. A CPG is composed of coupled neural os-
cillators and generates spatio-temporal patterns of rhythmic
activity without external rhythmic inputs. Neurophysiological
studies on animals revealed that rhythmic movements are
controlled by such networks, typically located in the spinal
nervous systems [10], [11].

One of the major issues with existing bipedal robots
is their limited capacities regarding gait adaptation and
modularity. However, gait modularity is crucial to achieve
reliable adaptative locomotion and seamless integration into
complex environments. Indeed, navigation through complex
and unstructured terrains or obstacles requires not only a
robust controller [12], but also the capacity to modulate the
gait around its steady-state pattern. For instance, humans
are indeed able to adapt their gait to achieve precise foot
placement in no more than two steps [13].

Typical contributions achieving precise foot placement
in humanoid robotics require kinematic control of the feet



trajectories [14], and generally use stiff motors to actuate
the joints [15]. Next to this, bio-inspired approaches also
explored the modulation of bipedal gaits, although they
typically focused on speed modulation while disregarding
other gait features like step height, length, period, or precise
foot placement [16], [17], [18], [19]. For instance in [20],
we extended the model of [7] with a CPG that featured the
capacity of modulating both the locomotion speed, and steer-
ing direction. The CPG was mainly activating the proximal
hip muscles while the feedback reflexes ruled the activation
of the distal ones.

The goal of the present paper is to bridge this gap.
More precisely, we report the developments of a bio-inspired
controller achieving modular and energy-efficient bipedal
locomotion with limited computational cost, in a simulation
environment. This locomotion controller builds upon our
previous work [19], [20] and runs on COMAN, a humanoid
robot which has the size of a 5-year-old child. The main
result of this paper is to report step height modulations
between 4 and 12cm, and step length modulations between
20 and 50cm, while keeping a stable gait in a very large
fraction of this range. We claim that this contribution is a
first – yet critical – step towards a bio-inspired bipedal robot
achieving precise foot placement and purposeful obstacle
avoidance.

The paper is structured as follows. Section II presents
the robot that was used as embodiment, in its simulation
environment. Section III reports the design of our bio-
inspired modulation controller, while Section IV reports
the sensitivity analysis that was conducted to identify the
modulation parameters. Section V reports the main gait
modulation results, and finally Section VI concludes the
paper.

II. BIPEDAL EMBODIMENT AND SIMULATOR

The robot used in this contribution is COMAN, developed
by the Italian Institute of Technology (IIT). This robot is si-
zed like a 5-year-old child: it is 95cm tall and weighs 31kg. It
has 23 controlled degrees of freedom (DOF), equipped with
compliant joints implemented using series elastic actuators
[21]. Each joint has position, velocity and torque sensors.
The robot also features an inertial measurement unit (IMU)
and 6-DOF feet force and torque sensors measuring ground
reactions [19]. COMAN was modeled and simulated in the
Robotran environment. This simulation environment models
sensory noise, in an effort to minimize the gap between
simulation and reality (see [20], [22] for details). Importantly,
the inputs available to the simulated robot are the same as the
ones available on the real one. In the context of this work,
the simulated robot was constrained to move in the sagittal
plane only, similarly to [19].

III. CONTROLLER DESIGN

The robot is controlled using a bio-inspired controller,
extensively reported in [19] and [20]. This section overviews
this earlier work and highlights the extensions that we
provided to achieve step height and length modulations.

Here, only the leg sagittal DOFs were actuated, and the robot
was constrained to move in this plane only (i.e. 2D walking).
The particular phase of gait initiation is described in [12].

A. Musculoskeletal model

The key principle of the controller governing the leg
sagittal DOFs is to capture muscle groups actuating each leg.
These muscle groups (called Muscle-Tendon Units – MTU)
receive stimulations, and thus virtually contract in order to
actuate the robot joints [7], [20], [23]. The 9 muscles groups
used to control COMAN are represented in Fig. 1a.

Obviously, the real or simulated COMAN has no muscle.
Instead, virtual muscles are simulated. These muscles are
virtually attached to the robot legs, and thus generate forces
and torques on the joints when contracting. The simulated
(or real) robot can then be actuated to follow the joint
torques provided by each of these muscle groups. All the
mathematical developments related to this model can be
found in [7], [24]. More information related to the MTU state
iteration scheme, state initialization, and integration time step
can be found in [20].

As compared to the original model [7], two muscles
groups were added in the latest version of the controller
[23]: the Biceps Femoris short head (BFSH) and the Rectus
Femoris (RF). These muscles both act on the knee joint (the
BFSH is mono-articular, while the RF also spans over the
hip joint), in order to facilitate its flexion, and thus foot
clearance. The muscles characteristics used for the BFSH
and RF are reported in Table I, the other muscle groups use
the same parameters as in [20].

TABLE I: Parameters of the two newly introduced muscles.
See [20] for the description of these parameters.

BFSH RF BFSH RF
Fmax [N] 124 425 ro [cm] 1.708 2.562
vmax [lopt/s] 18.36 18.36 ϕmax [deg] - 15
lopt [cm] 5.1 3.4 ϕre f [deg] 20 55
lslack [cm] 4.3 14.9 m [kg] 0.03 0.12

ρ [-] 0.7 0.5 (k) λ [-] 0.67 0.423
0.3 (h)

B. Reflexes and Central Pattern Generator

The signals stimulating the muscle-tendon units are ge-
nerated both by reflexes (i.e. feedback-driven modulations
depending on joints positions, velocities or torques, and on
the trunk reference lean angle Θ) and by a Central Pattern
Generator (CPG). The rules governing the reflexes are the
same as in [19], and hence not detailed here. The CPG
model (see Fig. 1b) is adapted from [20], and relies on 10
neurons generating rhythmic patterns. N1, N2, N3 and N4 are
called Rhythm Generation (RG) neurons [25] and provide the
fundamental clock of the CPG. The 6 other neurons, denoted
with letters, are called Pattern Formation (PF) neurons [25].
They are used to construct the stimulation patterns for the
different muscles.

The firing rate xi of each neuron Ni of this network obeys
a state equation similar to the one of a Matsuoka oscillator



[26], [27], with the subscript i corresponding to Fig. 1b:

ẋi =
1
τ
(−xi−β jνi −

3

∑
1

ηk[xl ]
++ui) (1)

In Eq. (1), νi is the self-inhibition state variable, modulated
by a gain β j, ui is an external tonic excitation feeding
each neuron, and τ is the time constant of the CPG. The
connection strengths ηk tune the antagonistic inhibitions, i.e.
the fact that activation of a given neuron decreases when
the antagonistic one is active. The function [•]+ saturates to
zero if its argument is negative (i.e. [x]+ = max(0,x)). This
captures the fact that neurons can only inhibit each other.

The self-inhibition state dynamics are computed with:

ν̇i =
1

γ jτ
(−νi +[xi]

+) (2)

where γi is another parameter modulating the self-inhibition
time constant. Our CPG network obeys a mirror symmetry
reproducing the symmetry of the right and left legs of
the robot. The outputs of the CPG are blended to provide
stimulations for the leg proximal muscles, as reported in the
appendix.

C. Gait optimization

The gait generator reported in the previous sections has
many open parameters, that need to be carefully tuned in
order to produce the desired gait pattern. This section first
describes the step height and step length metrics, and then
reports an optimization process and the associated fitness
function that were used to achieve this tuning using both of
these metrics.

1) Step height and step length metrics: The step height,
or ground clearance, is understood as the distance between
the swing foot and the ground when the heel of both feet
are on the same vertical line during the swing phase (red
dashed line in Fig. 2). The resulting height corresponds to
the minimal distance between the foot and the ground (i.e.
the vertical distance to the toes or heel), displayed with the
letter ’H’ in Fig. 2. The step length is understood as the
distance between two consecutive foot strikes, as displayed
with the letter ’L’ in Fig. 2.

2) Optimisation and fitness function: The algorithm that
we used to achieve the tuning of the controller gains is
a Particle Swarm Optimization (PSO) [28], based on the
one implemented in [19]. It is an iterative and heuristic
optimization method, based on the evaluation of a fitness
function over a series of sampled points, distributed within
the parameter space. The fitness function used for the
optimization was separated in stages, i.e. the next stage
was activated when a minimal condition was met with the
previous stage.

The first optimization stages were identical to those of
[19], and are used to guarantee that the robot walks a
minimum distance without falling, while maximizing its
walking time. Then, two new fitness stages were introduced,
and computed in parallel: the step height and step length
stages. These two fitnesses were computed using Gaussian

Fig. 2: Representation of the step height ’H’ and step length
’L’ metrics.

fitness functions like e−κ∆2
l where ∆l (resp. ∆h) captures the

difference between the measured mean step length (resp. step
height) and the desired one. The parameter κ modulates
the width of the Gaussian. We took it equal to 200 (resp.
2000) for the fitness stage related to step length (resp.
step height). The final stages were unlocked when ∆l <
3 · 10−2 [m] and ∆h < 1 · 10−2 [m]. These two final stages
were, again, the same as in [19], i.e. minimizing the virtual
metabolic energy spent by the muscles, and minimizing also
the phase error between the oscillating neurons and specific
gait events. These last stages respectively encouraged human-
like muscle-activation patterns, leading to energy-efficient
gaits, and proper synchronization between the feed-forward
pattern provided by the CPG and the corresponding gait
events. In order to encourage gait stability, each optimization
was run three times, with the resulting fitness computed as
a mean of the three fitnesses.

IV. SENSITIVITY ANALYSIS

Given the large number of open parameters in the gait
controller outlined in Section III, it is essential to carefully
identify those that will have a significant effect in modulating
the gait features of interest (here, step height and length).
This section details the sensitivity analysis that was perfor-
med to determine and select the relevant parameters for this
modulation.

A. Methods

A sensitivity analysis first requires the definition of a so-
called reference gait. The parameters corresponding to this
reference gait will serve as center of the parameters space
being explored in the analysis. Here, we chose a reference
gait with a step length of 40 [cm] and a step height of
6.5 [cm]. These features were taken from those of a healthy
human adult gait [29], [30], scaled to the size of COMAN.

The first parameter optimization was thus conducted in
order to have the robot converging to these gait features,
according to the method outlined in Section III-C. Then, the
sensitivity analysis consisted in analysing the influence of
several controller parameters on the gait features. Inspired by



our previous results ([19], [20]), we restricted this analysis to
the gains k multiplying the CPG outputs (see the appendix),
the time constant of the CPG τ , and the trunk reference lean
angle Θ . In total, the sensitivity analysis was performed
on 12 parameters: τ, Θ, kHFL, kGLU1, kGLU2, kHAM1, kHAM2,
kHAM3, kBFSH1, kBFSH2, kRF1 and kRF2.

The sensitivity analysis was performed as follows. For
each of these 12 parameters, 4 experimental trials where
conducted by taking respectively −20%, −10%, +10%, and
+20% of its reference value, and keeping all the others equal
to their reference. Each of these experimental conditions was
simulated 3 times in a row, and the average step length and
height were computed. Note that the experimental variability
was due to some random noise included in the simulated
sensors and actuators [19]. Next, the best linear fit (in the
least-squares sense) was computed for both gait features for
each parameter. We thus obtained 12 linear fits for each of
both features, and we considered that the parameters having
a significant influence on a given gait feature were those
whose slope was at least equal to 5% of the largest slope
among the 12.

B. Results

The results of the sensitivity analysis are reported in
Table II. For each parameter, the slope of the least squares
linear regression is given as a percentage of the maximum
slope for each gait feature. Parameters with slopes larger than
5% of the maximum slope (shown in grey in the table) are
then considered as having a significant impact in modulating
the corresponding feature.

Step length was thus considered to be modulated by 5
controller parameters: Θ, τ , kHFL, kGLU1, and kHAM2. Step
height was also significantly impacted by 5 parameters: Θ,
τ , kGLU1, kHAM1, and kHAM2. Since 4 of them were taken as
significant for both features, the sensitivity analysis revealed
that a total of 6 controller parameters should be kept for
achieving step height and length modulations. Interestingly,
the same 6 parameters emerged from [19], this time for
modulating the forward speed.

TABLE II: Slope of the linear fit between each tested
controller parameter and the corresponding gait feature, as a
function of the maximum slope, [%].

kHFL kGLU1 kGLU2 kHAM1 k′HAM2 kHAM3
Length 5.65 10.78 2.37 1.18 6.57 1.64
Height 0.95 6.79 2.46 5.02 7.43 3.02

kBFSH1 kBFSH2 kRF1 kRF2 Θ τ

Length 0.29 0.74 0.02 0.55 100 5.99
Height 0.00 1.96 1.44 1.41 100 88.52

V. GAIT MODULATION

Once the controller parameters having the most significant
influence in modulating the step height and length were
identified, we conducted another experiment aiming at mo-
dulating these parameters over a large range, and using only
the desired height and length as controller inputs. Given the

robot’s dimensions and some preliminary results, the target
range was [5; 12] [cm] for the step height and [25; 50] [cm]
for the step length. Moreover, we added two more parameters
to those selected by the sensitivity analysis for achieving this
experiment: kRF1 and kRF3. Indeed, they play a significant
role in modulating the knee torque, which turned out to
significantly influence both targeted gait features.

A. Methods: parametric co-optimization

1) Modulation function: The experiment was set up as
follows. Each of the 8 parameters that were allowed to vary
(i.e. the 6 revealed by the sensitivity analysis and the two
mentioned above) was modulated by a bi-variate second
order polynomial. These polynomials took two inputs, i.e.
the reference step length Sl and reference step height Sh,
and produced a modulated output being equal to:

fi(∆l ,∆h) = Ki +L10,i ·∆l +L01,i ·∆h +L11,i ·∆l ·∆h

+M20,i ·∆2
l +M02,i ·∆2

h
(3)

where ∆l = Sl−0.4 [m] and ∆h = Sh−0.065 [m] are the actual
modulation parameters, centered around what we considered
to be the center of the parameter space, i.e. Sl = 40[cm] and
Sh = 6.5[cm].

Finally, a single new optimization was performed to
tune both the non-varying controller parameters, and the
coefficients of the 8 polynomial functions captured by Eq.
(3), over the whole range of step heights and lengths. We
called this a “co-optimization”, since 85 parameters were
concomitantly tuned through this optimization: 48 for the
6 coefficients of the 8 modulated polynomials, 18 non-
modulated muscle stimulation gains, 18 fixed gains of the
CPG, and 1 initialization parameter (see [20]). One set of
controller parameters is thus a single point within this 85-
dimensional parameter space.

2) Fitness computation: To evaluate the fitness of one
set of these 85 parameters, 40 simulation trials were run.
These correspond to 40 equally spaced points in the {Sl ,Sh}
parametric space. The step height Sh indeed covered the
range [5; 12] [cm], with a discretization point every 1 [cm];
and the step length Sl covered the range [25; 45] [cm], with a
discretization point every 5 [cm]. For each of these 40 trials,
the fitness was computed as reported in Section III-C, and
finally, the global fitness of this particular set of parameters
was taken as the mean of the 40 fitness trials. Note that
each trial was limited to 60 walking seconds maximum, or
stopped in case the robot fell.

Over the co-optimization process, the 85 parameters were
restricted to evolve within bounds that are reported in Ta-
ble III. The simulation was run 5 times, again to comply
with the intrinsic variability of our simulation environment
and the heuristic nature of the Particle Swarm Optimization
(see Section III-C). The optimization results with the best
fitness were kept.

B. Results

In this section, the performances of the resulting modu-
lations are reported, quantified and discussed. All results



TABLE III: 85 parameters that were co-optimized, together with their lower and upper bounds.

min max min max min max min max
β L10,τ -0.05 0.15 KBFSH,4 0.0 12.0 L01,HAM,1 18.0 30.0
βa 4.5 8.0 L01,τ -0.19 -0.13 KRF,2 2.5 12.0 L11,HAM,1 -225.0 -175.0
βb 2.0 4.5 L11,τ 0.26 0.31 modulated CPG M20,HAM,1 90.0 100.0
βc 2.0 5.0 M20,τ 0.2 0.26 KΘ 0.12 0.132 M02,HAM,1 -1140.0 -1020.0
βd 3.0 4.5 M02,τ 3.9 4.9 M20,Θ -1.2 -0.9 KHAM,2 3.2 4.2
γ reflexes M02,Θ -21.0 -16.0 L10,HAM,2 -4.8 -2.7
γa 4.0 6.0 GSOL 0.6 0.9 L10,Θ 0.24 0.38 L01,HAM,2 -10.0 -7.0
γb 2.0 3.5 GSOL,TA 0.3 1.0 L01,Θ -0.42 -0.34 L11,HAM,2 -55.0 -40.0
γc 1.0 5.5 GTA,sw 1.5 6.0 L11,Θ -4.1 -3.5 M20,HAM,2 -21.5 -17.5
γd 2.5 3.5 GTA,st 1.5 2.5 KHFL 4.2 5.0 M02,HAM,2 8.0 10.0
η GGAS 0.4 0.8 L10,HFL 10.0 13.0 KRF,1 1.8 2.8
ηa 4.5 6.0 GVAS 35.0 45.0 L01,HFL 45.0 55.0 L10,RF,1 10.0 14.5
ηb 4.5 7.0 LTA,sw 0.8 0.9 L11,HFL 160.0 210.0 L01,RF,1 -110.0 -85.0
ηc 2.5 4.5 LTA,st 0.6 0.75 M20,HFL 75.0 85.0 L11,RF,1 -400.0 -350.0
ηd 4.0 6.5 φk,th 0.0 0.35 M02,HFL -280.0 -240.0 M20,RF,1 30.0 36.5
ηe 2.0 3.0 Kp,Θ 8.0 14.0 KGLU,1 1.3 2.1 M02,RF,1 850.0 950.0
η f 3.0 4.0 Kd,Θ 0.2 0.8 L10,GLU,1 6.5 8.5 KRF,3 1.7 2.7
ηg 4.0 5.0 fixed CPG L01,GLU,1 -8.5 -6.4 L10,RF,3 14.0 19.0
ηh 3.7 4.8 KHAM,3 0.0 0.3 L11,GLU,1 95.0 115.0 L01,RF,3 30.0 40.0
ηi 2.5 3.5 KGLU,2 0.0 0.3 M20GLU1 46.0 57.0 L11,RF,3 110.0 140.0
η j 1.0 4.0 KBFSH,1 3.0 12.0 M02GLU1 540.0 600.0 M20,RF,3 125.0 155.0
τ KBFSH,2 0.0 0.5 KHAM,1 6.9 7.6 M02,RF,3 390.0 460.0
Kτ 0.095 0.125 KBFSH,3 0.0 12.0 L10,HAM,1 10.0 15.0 init: Xinit 0.03 0.07

report walking trials of maximum 60 seconds. The explored
parameter space was enlarged to [20; 50] [cm] for the step
length, and to [4; 12] [cm] for the step height. These were
wider ranges than those used for the co-optimization, be-
cause we were interested in investigating how the optimized
polynomial modulations (3) generalized beyond their initial
regression space.

A global overview of the gait modulation performance is
provided in Fig. 3. This figure reports gait results obtained
with the best set of 85 parameters, i.e. the outcome of
the co-optimization process. Importantly, the biped achieved
stable walking for all these trials, although the steady-state
error in both stabilized gait features was not similar all
over the explored space. In particular, Fig. 3 highlights 4
different regions: the central one is where both features
were considered to be accurately controlled (i.e. less than
1.5 [cm] of error for the step height and 3 [cm] for the step
length); two other regions capture the parameter subspace
where only one of both features was considered to be
accurately controlled, and the most peripheral region captures
the subspace where none was considered to be accurately
controlled, according to the same error threshold. This figure
reveals that both features were accurately controlled over
most of the regression space, since the regions were one or
both features were not considered to be accurately controlled
were actually outside of the initial optimization range.

Accurate step feature control is actually the most chal-
lenging in the region where the references correspond to
both small step lengths and high step heights, i.e. the lower
right corner of Fig. 3. This region indeed corresponds to a
region where the step height error is large (it actually linearly
increases with the height reference in this region), while the
step length shows both large errors and large variability, thus
compromising accurate control.

Finally, we now report steady-state performance of gait
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Fig. 3: Graphical representation of parametric regions where
the control of step height, step length, or both is accurate.
Step height (length) is considered to be accurately controlled
if the steady-state error is smaller than 1.5 [cm] (3 [cm]),
in absolute value. Labels 1 to 6 refer to the successive
step features references {Sl ,Sh} that were applied to the
experiment reported in Fig. 4.

features modulation, as well as transitions between these
references. More precisely, the robot was requested to mo-
dulate its gait along 6 steady-state references reported in
Fig. 3. The actual robot performance is reported in Fig. 4.
Actual step length was measured between two consecutive
foot strikes, and actual step height was measured when both
ankles crossed each other. The label displayed as blue circles
in Fig. 4 capture the successive {Sl ,Sh} references provided
to the robot controller, consistently to Fig. 3. Each reference
stayed stationary for 10 seconds, and each transition lasted 5
seconds in-between. A video of this experiment is provided



as supplementary material (gait modulation.mp4).
The first reference point was {Sl ,Sh}={40,6.5}. This cor-

responded to the so-called reference gait, i.e. the center of the
parametric space explored in the sensitivity analysis reported
in Section IV. Fig. 4 reveals that both actual step length and
height converged to these values, although minor steady-
state errors and moderate fluctuations are also observable.
The second reference point was {25,6.5}, and was applied
from t = 20 [s]. Although the reference step height did not
change, its actual value switched from a negative to a positive
offset. The step length reached the new smaller reference,
with slightly larger variability around steady-state.

The next transition brought the gait to the third reference
point, i.e. {25,4}. This corresponded to the lowest step
height reference possible, although the resulting reference
pair is still in the “controllable” zone in Fig. 3. Indeed both
features correctly converged to their respective references,
again with moderate steady-state error and variability. The
fourth reference point was {45,4}. This reference laid in
the light blue area in Fig. 3, meaning that step height might
be not accurately controlled. Indeed, the step height steady-
state error significantly increased of about 2 [cm] over this
transition, which incidentally only concerned the step length
(switching from 20 to 45 [cm]).

The fifth reference point {45,11} was located at the
boundary of the possible modulation space for step height:
although the reference was equal to 11 [cm], the step height
oscillated around a significantly smaller value, of about
10 [cm]. Finally, the last reference, at {30,10}, provided
again almost no steady-state error, for each of both features.
The whole experiment displayed in Fig. 4 also globally
reveals that the transitions from one steady-state reference
to another were quite fast. Indeed, the gait stabilized around
its new steady-state features in less than 2 seconds after
all transitions. This corresponds to slightly more than three
steps, since one step lasted about 0.65 [s].

In Fig. 5, snapshots of all consecutive foot strikes around
the transition from reference 3 to reference 4 are shown. This
illustrates that step length indeed progressively increased
after the transition in the corresponding reference signal.
Similarly, Fig. 6 shows snapshots when step height was
measured, for every other step over the transition from
reference 4 to reference 5. Again, the figure clearly highlights
the evolution in step height from step to step. In particular,
the knee and hip joints displayed larger flexion and extension,
respectively, in order to produce larger step height.

VI. DISCUSSION AND CONCLUSION

Section IV revealed that 6 parameters of the gait controller
played a significant role in modulating the gait features. First,
the trunk lean angle Θ had the strongest modulation effect
on both the step height and length, and no other parameter
reached 10% of these maximum slopes (except the time
constant τ for the step height). This result is consistent with
all former results obtained with the successive developments
of this controller, that all showed a significant influence of
this parameter in modulating several gait features [7], [19],

[20]. Indeed, the error between the actual trunk angle and this
reference amplifies the reflex stimulation partly controlling
the GLU and HFL muscle groups, both being proximal
MTUs having a strong influence for the whole leg dynamics.

The influence of the CPG time constant τ was also
expected to be significant for both features, because step
frequency is strongly related to both step length and step
height [17], [31]. Our results confirmed this expectation,
although the slope was steeper for the step height than for the
step length. However, the results obtained while modulating
τ should be handled with caution, because most of the
negative variations applied to this parameter with respect to
its reference value caused the robot to fall. This suggests
that the sensitivity of the controller to this parameter might
actually be larger than revealed by this linear fit analysis.

The other parameters with significance above the threshold
were CPG output gains acting on the HFL, GLU and HAM
muscles, i.e. the 3 most proximal MTUs. These 3 muscles
indeed actuate the hip (see Fig.1a), and their resulting torque
thus have an impact on the whole leg serial articulated chain.
The RF MTU is also connected to the hip, although its gains
did not pass the modulation threshold. This was likely due
to the fact that this muscle has a lower force capacity Fmax
than the 3 previously mentioned.

In sum, the virtual muscles that received the most signi-
ficant modulations of their stimulations in order to change
the steady-state gait features were all acting on the hip joint.
Proximal MTUs are thus likely more critical than distal ones
in order to modulate the leg dynamics and thus the associated
gait features. This result is consistent with the so-called
proximo-distal gradient, postulating that proximal joints and
muscles are mainly controlled by descending signals (here
the CPG outputs) modulating the gait features, while distal
joints and muscles are mainly driven by reflexes (feedback)
[9], [20]. This builds upon the rationale that distal muscles
are more impacted by external perturbations like ground
interactions [32].

The reported experimental gait modulation was able to
control – without falling – the gait throughout a parameter
space of [4; 12] [cm] for the step height and [20; 50] [cm] for
step length, although small steady-state errors were observed
near the boundaries. Taking the size of the COMAN into
account, this range is likely approaching the achievable limit
of our bio-inspired dynamic walking approach, and actually
scales well to the range of a healthy human.

An interesting perspective regarding this modulation could
be to analyse the walking speed obtained throughout the
modulation space. Indeed, both features being currently
modulated do not enable any explicit control of the walking
speed. In contrast, modulating the gait period as a third gait
feature would leverage the control of the walking speed:
step length and period indeed unequivocally determine the
walking speed. However, it is expected that modulating a
third feature concomitantly with the step height and length
will likely induce cross-modulations between them, since
only the step height and length already show a certain degree
of interdependence.
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Fig. 4: Actual control of step length and height as a function of time. Both gait features (blue) are plotted with their
corresponding reference signal (red). These references switched over 6 different steady-state values being graphically
represented in the modulation space in Fig. 3. A video of this experiment is provided as supplementary material
(gait modulation.mp4).

Fig. 5: Transition from reference 3 to 4 (i.e. from t ≈ 47 [s]
to t ≈ 51 [s]), with snapshots taken at each consecutive strike.

Fig. 6: Transition from reference 4 to 5 (i.e. from t ≈
58.5 [s] to t ≈ 66 [s]), with snapshots taken at step height
measurement, every other step (when the right foot is in
swing).

Another open question regarding our results in whether re-
ducing the steady-state variability of both step features might
be achieved. Indeed, estimating the precise foot landing
location with our model is currently challenging due to this
large step-by-step variability. Better estimation of the foot
landing location would be a necessary ingredient towards

using our controller for achieving predictive control, and thus
selecting the most appropriate reference features according
to various potential criteria (e.g. obstacle avoidance, cost
of transport, etc.). The step location decision could then
be autonomously performed by an appropriate upper-level
controller in charge of providing step height and step length
references.

Finally, our paper also opens interesting perspectives for
investigating the role of descending pathways in the human
nervous system. In particular, it would be of interest to
report the similarities and differences between the effects
of descending modulation from the human spinal cord to the
resulting gait, and the mechanisms found here by means of
our co-optimization approach.

The present paper paves the way towards the use of
humanoid robots achieving both efficient human-like gaits,
and accurate control of foot placement through modulation of
key gait features. Our future work will consist in extending
these results to 3D, i.e. out of the sagittal plane — similarly
to [20] for speed and steering modulations — and then
porting the same controller to the real hardware. We expect
to contribute to the design of robots which efficiently and
autonomously navigate through complex environments, thus
having the potential of safely interacting with humans, or
preventing them from performing hazardous duties.

APPENDIX - MUSCLE STIMULATIONS FROM THE CPG

Proximal muscles are stimulated using the outputs of the
CPG neurons according to:

SHFL,R/L = kHFL · [y2/1]
+

SGLU,R/L = kGLU1 · [y3/4]
++ kGLU2 · [y5/6]

+



SHAM,R/L = kHAM1 · [y3/4]
++ kHAM2 · [y4/3]

+

+kHAM3 · [y5/6]
+

SBFSH,R/L = kBFSH1 · [y2/1]
++ kBFSH2 · [y5/6]

+

+kBFSH3 · [y3/4]
++ kBFSH4 · [y6/5]

+

SRF,R/L = kRF1 · [y2/1]
++ kRF2 · [y5/6]

++ kRF3 · [y6/5]
+

where R/L stands for right and left, respectively, and yi =
[[x j]

+− [xk]
+]

+, with x j being the firing rate of a PF neuron
and xk the firing rate of a RG neuron directly connected to
x j (see [20]).
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